Preview

Медицинская иммунология

Расширенный поиск

Роль неканонических Т-клеток в гомеостазе и патологии

https://doi.org/10.15789/1563-0625-RON-2918

Аннотация

Помимо хорошо известных субпопуляций Т-лимфоциов адаптивного иммунитета и лимфоцитов врожденного иммунитета (innate lymphoid cells) существует промежуточная группа лимфоцитов (innate-like cells), уже обладающая Т-клеточным рецептором, но с ограниченным репертуаром. В эту группу следует отнести γδТ-клетки, субпопуляции NKT-клеток I и II типов, несущих как Т-рецептор, так и рецепторы NK-клеток и mucosal-associated invariant T (MAIT) клетки. Развитие innate-like cells происходит в тимусе, однако положительная и отрицательная селекция их проходит без участия эпителиальных клеток тимуса. Отличительной особенностью является то, что innate-like cells приобретают эффекторный фенотип уже в тимусе, поэтому не требуют сложных реакций активации при распознании антигена. На момент выхода из тимуса неканонические Т-клетки экспрессируют хемокиновые рецепторы, позволяющие им мигрировать в барьерные ткани уже в раннем возрасте. Характерной особенностью Т-клеточного рецептора innate-like cells является распознавание непептидных антигенов, презентированных в неполиморфных молекулах тканевой совместимости (МНС-Ib). К этому типу молекул относятся молекулы CD1 a/b/c/d/e и молекула MR1. Эти молекуклы презентируют липидные, гликолипидные антигены и метаболиты витаминов группы В, синтезируемые различными представителями микробиоты. Наличие функционально различных субпопуляций innate-like cells, имеющих активированный фенотип, позволяют им быстро реагировать на антиген продукцией цитокинов, типичных для Th1, Th2, Th17. Также они обладают цитотоксической и иммунорегуляторной активностью. Эти клетки активно вовлечены в регуляцию гомеостаза барьерных тканей и взаимодействие с микробиотой. Они синтезируют факторы роста для эпителиальных клеток, фибробластов, эндотелия сосудов, что необходимо для регенерации поврежденных тканей. Также они участвуют в противоинфекционной защите, направляя развитие иммунного ответа. Более того, они оказались участниками многих аутоиммунных заболеваний. Особенности функционирования innate-like cells делают их перспективной мишенью для терапевтических воздействий. Показано, что антибиотики, салицилаты и некоторые другие известные препараты оказывают влияние на innate-like cells. Различные варианты диеты также влияют на активность этих клеток.

Об авторе

А. П. Топтыгина
ФБУН «Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского» Роспотребнадзора; ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»
Россия

Топтыгина А.П. – д.м.н., главный научный сотрудник, руководитель лаборатории цитокинов; профессор кафедры иммунологии биологического факультета

125212, Россия, Москва, ул. Адмирала Макарова, 10

Тел.: 8 (495) 452-18-01

Факс: 8 (495) 452-18-30



Список литературы

1. Almeida C.F., Smith D.G.M., Cheng T.Y., Harpur C.M., Batleska E., Nguyen-Robertson C.V., Nguyen T., Thelemann T., Reddiex S.J.J., Li S., Eckle S.B.G., van Rhijn I., Rossjohn J., Uldrich A.P., Moody D.B., Williams S.J., Pellicci D.G., Godfrey D.I. Benzofuran sulfonates and small self-lipid antigens activate type II NKT cells via CD1d. Proc. Natl Acad. Sci. USA, 2021, Vol. 118, no. 34, e2104420118. doi: 10.1073/pnas.2104420118.

2. An D., Oh S.F., Olszak T., Neves J.F., Avci F.Y., Erturk-Hasdemir D., Lu X., Zeissig S., Blumberg R.S., Kasper D.L. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014, Vol. 156, no. 1-2, pp. 123-133. doi: 10.1016/j.cell.2013.11.042.

3. Anderson L.S., Yu S., Rivara K.R., Reynolds M.B., Hernandez A.A., Wu X., Yang H.Y., Isseroff R.R., Miller L.S., Hwang S.T., Simon S.I. CCR6(+) gammadelta T cells home to skin wounds and restore normal wound healing in CCR6-deficient mice. J. Invest. Dermatol., 2019, Vol. 139, no. 9, pp. 2061-2064.e2.

4. Arrenberg P., Halder R., Dai Y., Maricic I., Kumar V. Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc. Natl Acad. Sci. USA, 2010, Vol. 107, pp. 10984-10989.

5. Bazett M., Bergeron M.E., Haston C.K. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model. Sci. Rep., 2016, Vol. 6, 19189. doi: 10.1038/srep19189.

6. Bedel R., Berry R., Mallevaey T., Matsuda J.L., Zhang J., Godfrey D.I., Rossjohn J., Kappler J.W., Marrack P., Gapin L. Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. Proc. Natl Acad. Sci. USA, 2014, Vol. 111, pp. E119-E128.

7. Bendelac A., Savage P.B., Teyton L. The biology of NKT cells. Annu Rev. Immunol., 2007, Vol. 25, pp. 297-336.

8. Bhagat G., Naiyer A.J., Shah J.G., Harper J., Jabri D., Wang T.C., Green P.H.R., Manavalan J.S. Small intestinal CD8+TCRgammadelta+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J. Clin. Invest., 2008, Vol. 118, pp. 281-293.

9. Brennan P.J., Brigl M., Brenner M.B. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol., 2013, Vol. 13, pp. 101-117.

10. Brigl M., Brenner M.B. CD1: antigen presentation and T cell function. Annu Rev. Immunol., 2004, Vol. 22, pp. 817-890.

11. Burrello C., Garavaglia F., Cribiu F.M., Ercoli G., Bosari S., Caprioli F., Facciotti F. Short-term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer T and converntional CD4(+) T Cells. Front. Med., 2018, Vol. 5, 21. doi: 10.3389/fmed.2018.00021.

12. Burrello C., Strati F., Lattanzi G., Diaz-Basabe A., Mileti E., Giuffre M.R., Lopez G., Cribiù F.M., Trombetta E., Kallikourdis M., Cremonesi M., Conforti F., Botti F., Porretti L., Rescigno M., Vecchi M., Fantini M. C., Caprioli F., Facciotti F. IL-10 secretion endows intestinal human iNKT cells with regulatory functions towards pathogenic T lymphocytes. J. Crohns Colitis., 2022, Vol. 16, no. 9, pp. 1461-1474.

13. Canchis P.W., Bhan A.K., Landau S.B., Yang L., Balk S.P., Blumberg R.S. Tissue distribution of the nonpolymorphic major histocompatibility complex class I-like molecule, CD1d. Immunology, 1993, Vol. 80, no. 4, pp. 561-565.

14. Carolan E., Tobin L.M., Mangan B.A., Corrigan M., Gaoatswe G., Byrne G., Geoghegan J., Cody D., O’Connell J., Winter D.C., Doherty D.G., Lynch L., O’Shea D., Hogan A.E. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J. Immunol., 2015, Vol. 194, no. 12, pp. 5775-5780.

15. Chang P.P., Barral P., Fitch J., Pratama A., Ma C.S., Kallies A., Hogan J.J., Cerundolo V., Tangye S.G., Bittman R., Nutt S.L., Brink R., Godfrey D.I., Batista F.D., Vinuesa C.G. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol., 2012, Vol. 13, pp. 35-43.

16. Cheroutre H., Lambolez F. The thymus chapter in the life of gut-specific intra epithelial lymphocytes. Curr. Opin. Immunol., 2008, Vol. 20, pp. 18-191.

17. Chiba A., Tamura N., Yoshikiyo K., Murayama G., Kitagaichi M., Yamaji K., Takasaki Y., Miyake S. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res. Ther., 2017, Vol. 19, no. 1, 58. doi: 10.1186/s13075-017-1257-5.

18. Chien Y.H., Meyer C., Bonneville M. gammadelta T cells: first line of defense and beyond. Annu Rev. Immunol., 2014, Vol. 32, pp. 121-155.

19. Chodaczek G., Papanna V., Zal M.A., Zal T. Body-barrier surveillance by epidermal gammadelta TCRs. Nat. Immunol., 2012, Vol. 13, no. 3, pp. 272-282.

20. Constantinides M.G., Belkaid Y. Early-life imprinting of unconventional T cells and tissue homeostasis. Science, 2021, Vol. 374, no. 6573, eabf0095. doi: 10.1126/science.abf0095.

21. Cosway E.J., White A.J., Parnell S.M., Schweighoffer E., Jolin H.E., Bacon A., Rodewald H.R., Tybulewicz V., McKenzie A.N.J., Jenkinson W.E., Anderson G. Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Sci. Immunol., 2022, Vol. 7, no. 69, eabn3286. doi: 10.1126/sciimmunol.abn3286.

22. Croxford J.L., Miyake S., Huang Y.-Y., Shimamura M., Yamamura T. Invariant V (alpha)19i T cells regulate autoimmune inflammation. Nat. Immunol., 2006, Vol. 7, pp. 987-994.

23. Dalton J.E., Cruickshank S.M., Egan C.E., Mears R., Newton D.J., Andrew E.M., Lawrence B., Howell G., Else K.J., Gubbels M.-J., Striepen B., Smith J.E., White S.J., Carding S.R. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology, 2006, Vol. 131, pp. 818-829.

24. Dimova T., Brouwer M., Gosselin F., Tassignon J., Leo O., Donner C., Marchant A., Vermijlen D. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc. Natl Acad. Sci. USA, 2015, Vol. 112, no. 6, pp. E556-E565.

25. Dunne M.R., Elliott L., Hussey S., Mahmud N., Kelly J., Doherty D.G., Feighery C.F. Persistent changes in circulating and intestinal γδT cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One, 2013, Vol. 8, e76008. doi: 10.1371/journal.pone.0076008.

26. Dutta M., Kraus Z.J., Gomez-Rodriguez J., Hwang S.H., Cannons J.L., Cheng J., Lee S.Y., Wiest D.L., Wakeland E.K., Schwartzberg P.L. A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J. Immunol., 2013, Vol. 190, pp. 2121-2128.

27. Ennamorati M., Vasudevan C., Clerkin K., Halvorsen S., Verma S., Ibrahim S., Prosper S., Porter C., Yeliseyev V., Kim M., Gardecki J., Sassi S., Tearney G., Cherayil B.J., Bry L., Seed B., Jain N. Intestinal microbes influence development of thymic lymphocytes in early life. Proc. Natl Acad. Sci. USA, 2020, Vol. 117, pp. 2570-2578.

28. Fahrer A.M., Konigshofer Y., Kerr E.M., Ghandour G., Mack D.H., Davis M.M., Chien Y.H. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA, 2001, Vol. 98, pp. 10261-10266.

29. Franciszkiewicz K., Salou M., Legoux F., Zhou Q., Cui Y., Bessoles S., Lantz O. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol. Rev., 2016, Vol. 272, pp. 120-138.

30. Fuss I.J., Joshi B., Yang Z., Degheidy H., Fichtner-Feigl S., de Souza H., Rieder F., Scaldaferri F., Schirbel A., Scarpa M., West G., Yi C., Xu L., Leland P., Yao M., Mannon P., Puri R.K., Fiocchi C., Strober W. IL-13Ralpha2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut, 2014, Vol. 63, pp. 1728-1736.

31. Gapin L. Development of invariant natural killer T cells. Curr. Opin. Immunol., 2016, Vol. 39, pp. 68-74.

32. Gaya M., Barral P., Burbage M., Aggarwal S., Montaner B., Navia A.W., Aid M., Tsui C., Maldonado P., Nair U., Ghneim K., Fallon P. G., Sekaly R.-P., Barouch D.H., Shalek A.K., Bruckbauer A., Strid J., Batista F.D. Initiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cells. Cell, 2018, Vol. 172, pp. 517-533.e20.

33. Griewank K., Borowski C., Rietdijk S., Wang N., Julien A., Wei D.G., Mamchak A.A., Terhorst C., Bendelac A. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity, 2007, Vol. 27, pp. 751-762.

34. Godfrey D.I., Berzins S.P. Control points in NKT-cell development. Nat. Rev. Immunol., 2007, Vol. 7, pp. 505-518.

35. Godfrey D.I., Uldrich A.P., McCluskey J., Rossjohn J., Moody D.B. The burgeoning family of unconventional T cells. Nat. Immunol., 2015, Vol. 16, no. 11, pp. 1114-1123.

36. Goldberg E.L., Shchukina I., Asher J.L., Sidorov S., Artyomov M.N., Dixit V.D. Ketogenesis activates metabolically protective gamma delta T cells in visceral adipose tissue. Nat. Metab., 2020, Vol. 2, no. 1, pp. 50-61.

37. Guo X.J., Dash P., Crawford J.C., Allen E.K., Zamora A.E., Boyd D.F., Duan S., Bajracharya R., Awad W.A., Apiwattanakul N., Vogel P., Kanneganti T.D., Thomas P.G. Lung gammadelta T cells mediate protective responses during neonatal influenza infection that are associated with type 2 immunity. Immunity, 2018, Vol. 49, no. 3, pp. 531-544.e6.

38. Hams E., Locksley R.M., McKenzie A.N., Fallon P.G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol., 2013, Vol. 191, pp. 5349-5353.

39. Han J., Liu N., Jin W., Zanvit P., Zhang D. , Xu J., Bynum A., Kazmi R., Zhang J., He W., Chen W-J. TGF-β controls development of TCRγδ+CD8αα+ intestinal intraepithelial lymphocytes. Cell Discov., 2023, Vol. 9, 52. doi: 10.1038/s41421-023-00542-2.

40. Havran W.L., Allison J.P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature, 1988, Vol. 335, pp. 443-445.

41. Hinks T.S.C., Zhou X., Staples K.J., Dimitrov B.D., Manta A., Petrossian T., Lum P.Y., Smith C.G., Ward J.A., Howarth P.H., Walls A.F., Gadola S.D., Djukanović R. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol., 2015, Vol. 136, pp. 323-333.

42. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science, 2012, Vol. 336, pp. 1268-1273.

43. Hu M.D., Ethridge A.D., Lipstein R., Kumar S., Wang Y., Jabri B., Turner J.R., Edelblum K.L. Epithelial IL-15 is a critical regulator of γδ intraepithelial lymphocyte motility within the intestinal mucosa. J. Immunol., 2018, Vol. 201, no. 2, pp. 747-756.

44. Huijts C.M., Schneiders F.L., Garcia-Vallejo J.J., Verheul H.M., de Gruijl T.D., van der Vliet H.J. mTOR inhibition per Se induces nuclear localization of FOXP3 and conversion of Invariant NKT (iNKT) cells into immunosuppressive regulatory iNKT cells. J. Immunol., 2015, Vol. 195, no. 5, pp. 2038-2045.

45. Ismail A.S., Severson K.M., Vaishnava S., Behrendt C.L., Yu X., Benjamin J.L., Ruhn K.A., Hou B., deFranco A.L., Yarovinsky F., Hooper L.V. Gammadelta intraepithelial lymphocytes are essential mediators of hostmicrobial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA, 2011, Vol. 108, pp. 8743-8748.

46. Jahng A., Maricic I., Aguilera C., Cardell S., Halder R.C., Kumar V. Prevention of autoimmunity by targeting a distinct, non invariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med., 2004, Vol. 199, pp. 947-957.

47. Jameson J., Ugarte K., Chen N., Yachi P., Fuchs E., Boismenu R., Havran W.L. A role for skin gammadelta T cells in wound repair. Science, 2002, Vol. 296, no. 5568, pp. 747-749.

48. Jin Y., Xia M., Sun A., Saylor C.M., Xiong N. CCR10 is important for the development of skin-specific gammadelta T cells by regulating their migration and location. J. Immunol., 2010, Vol. 185, pp. 5723-5731.

49. Kain L., Costanzo A., Webb B., Holt M., Bendelac A., Savage P.B., Teyton L. Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol. Immunol., 2015, Vol. 68, pp. 94-97.

50. Kanamori M., Tasumi Y., Iyoda T., Ushida M., Inaba K. Sulfatide inhibits alpha-galactosylceramide presentation by dendritic cells. Int. Immunol., 2012, Vol. 24, pp. 129-136.

51. Kang S.J., Jin H.M., Won E.J., Cho Y.-N., Jung H.-J., Kwon Y.-S., Kee H. J., Ju J. K., Kim J.-C., Kim U. J., Jang H.-C., Jung S.-I., Kee S.-J., Park Y.-W. Activation, impaired tumor necrosis factor-alpha production, and deficiency of circulating mucosal-associated invariant T cells in patients with scrub typhus. PLoS Negl. Trop. Dis., 2016, Vol. 10, e4832. doi: 10.1371/journal.pntd.0004832.

52. Keller A.N., Eckle S.B.G., Xu W., Liu L., Hughes V.A., Mak J.Y., Meehan B.S., Pediongco T., Birkinshaw R.W., Chen Z., Wang H., D’Souza C., Kjer-Nielsen L., Gherardin N.A., Godfrey D.I., Kostenko L., Corbett A.J., Purcell A.W., Fairlie D.P., McCluskey J., Rossjohn J. Drugs and drug-like molecules can modulate the function of mucosalassociated invariant T cells. Nat. Immunol., 2017, Vol. 18, no. 4, pp. 402-411.

53. Kinjo Y., Kitano N., Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J. Infect. Chemother., 2013, Vol. 19, pp. 560-570.

54. Kjer-Nielsen L., Patel O., Corbett A.J., Le Nours J., Meehan B., Liu L., Bhati M., Chen Z., Kostenko L., Reantragoon R., Williamson N.A., Purcell A.W., Dudek N.L., McConville M.J., O’Hair R.A., Khairallah G.N., Godfrey D.I., Fairlie D.P., Rossjohn J., McCluskey J. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012, Vol. 491, pp. 717-723.

55. Knowlden S., Georas S.N. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J. Immunol., 2014, Vol. 192, pp. 851-857.

56. Koay H.F., Gherardin N.A., Enders A., Loh L., Mackay L.K., Almeida C.F., Russ B.E., Nold-Petry C.A., Nold M.F., Bedoui S., Chen Z., Corbett A.J., Eckle S.B., Meehan B., d’Udekem Y., Konstantinov I.E., Lappas M., Liu L., Goodnow C.C., Fairlie D.P., Rossjohn J., Chong M.M., Kedzierska K., Berzins S.P., Belz G.T., McCluskey J., Uldrich A.P., Godfrey D.I., Pellicci D.G. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol., 2016, Vol. 17, pp. 1300-1311.

57. Koay H.-F., Godfrey D.I., Pellicci D.G. Development of mucosal-associated invariant T cells. Immunol. Cell Biol., 2018, Vol. 96, no. 6, pp. 598-606.

58. Kok W.L., Denney L., Benam K., Cole S., Clelland C., McMichael A.J., Ho L.-P. Pivotal advance: Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza a virus infection. J. Leukoc. Biol., 2012, Vol. 91, no. 3, pp. 357-368.

59. LaMarche N.M., Kane H., Kohlgruber A.C., Dong H., Lynch L., Brenner M.B. Distinct iNKT cell populations use IFNgamma or ER stress-induced IL-10 to control adipose tissue homeostasis. Cell Metab., 2020, Vol. 32, no. 2, pp. 243-258.e6.

60. Le Bourhis L., Martin E., Peguillet I., Guihot A., Froux N., Coré M., Lévy E., Dusseaux M., Meyssonnier V., Premel V., Ngo C., Riteau B., Duban L., Robert D., Huang S., Rottman M., Soudais C., Lantz O. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol., 2010, Vol. 11, pp. 701-708.

61. Lee Y.J., Holzapfel K.L., Zhu J., Jameson S.C., Hogquist K.A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol., 2013, Vol. 14, pp. 1146-1154.

62. Lee S., Koh J., Chang Y., Kim H.Y., Chung D.H. Invariant NKT cells functionally link microbiota-induced butyrate production and joint inflammation. J. Immunol., 2019, Vol. 203, no. 12, pp. 3199-3208.

63. Leeansyah E., Loh L., Nixon D.F., Sandberg J.K. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat. Commun., 2014, Vol. 5, 3143. doi: 10.1038/ncomms4143.

64. Leng T., Akther H.D., Hackstein C.P., Powell K., King T., Friedrich M., Christoforidou Z., McCuaig S., Neyazi M., Arancibia-Carcamo C.V., Hagel J., Powrie F., Oxford I.B.D.I., Peres R.S., Millar V., Ebner D., Lamichhane R., Ussher J., Hinks T.S.C., Marchi E., Willberg C., Klenerman P. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep., 2019, Vol. 28, no. 12, pp. 3077-3091.e5.

65. Liew P.X., Lee W.Y., Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity, 2017, Vol. 47, no. 4, pp. 752-765.e5.

66. Loh L., Ivarsson M.A., Michaelsson J., Sandberg J.K., Nixon D.F. Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine. Mucosal Immunol., 2014, Vol. 7, no. 5, pp. 1233-1243.

67. Loh L., Wang Z., Sant S., Koutsakos M., Jegaskanda S., Corbett A.J., Liu L., Fairlie D.P., Crowe J., Rossjohn J., Xu J., Doherty P.C., McCluskey J., Kedzierska K. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl Acad. Sci. USA, 2016, Vol. 113, pp. 10133-10138.

68. Lynch L., Michelet X., Zhang S., Brennan P.J., Moseman A., Lester C., Besra G., Vomhof-Dekrey E.E., Tighe M., Koay H.F., Godfrey D.I., Leadbetter E.A., Sant’Angelo D.B., von Andrian U., Brenner M.B. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T cells and macrophages in adipose tissue. Nat. Immunol., 2014, Vol. 16, pp. 85-95.

69. MacLeod A.S., Hemmers S., Garijo O., Chabod M., Mowen K., Witherden D.A., Havran W.L. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J. Clin. Invest., 2013, Vol. 123, pp. 4364-4374.

70. Mann A.O., Hanna B.S., Munoz-Rojas A.R., Sandrock I., Prinz I., Benoist C., Mathis D. IL-17A-producing gammadeltaT cells promote muscle regeneration in a microbiota-dependent manner. J. Exp. Med., 2022, Vol. 219, no. 5, e20211504. doi: 10.1084/jem.20211504.

71. Maricic I., Sheng H., Marrero I., Seki E., Kisseleva T., Chaturvedi S., Molle N., Mathews S.A., Gao B., Kumar V. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology, 2015, Vol. 61, pp. 1357-1369.

72. Matsuda J.L., Mallevaey T., Scott-Browne J., Gapin L. CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr. Opin. Immunol., 2008, Vol. 20, pp. 358-368.

73. Mayassi T., Ladell K., Gudjonson H., McLaren J.E., Shaw D.G., Tran M.T., Rokicka J.J., Lawrence I., Grenier J.C., van Unen V., Ciszewski C., Dimaano M., Sayegh H.E., Kumar V., Wijmenga C., Green P.H.R., Gokhale R., Jericho H., Semrad C.E., Guandalini S., Dinner A.R., Kupfer S.S., Reid H.H., Barreiro L.B., Rossjohn J., Price D.A., Jabri B. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. Cell, 2019, Vol. 176, pp. 967-981.e919.

74. Miyazaki Y., Miyake S., Chiba A., Lantz O., Yamamura T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int. Immunol., 2011, Vol. 23, pp. 529-535.

75. Nair S., Boddupalli C.S., Verma R., Liu J., Yang R., Pastores G.M., Mistry P.K., Dhodapkar M.V. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood, 2015, Vol. 125, pp. 1256-1271.

76. Ogata M., Itoh T. Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat. Sci. Int., 2016, Vol.91, pp. 301-312.

77. Olivares-Villagómez D., van Kaer L. Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier. Trends Immunol., 2018, Vol. 39, pp. 264-275.

78. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., Glickman J.N., Siebert R., Baron R.M., Kasper D.L., Blumberg R.S. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012, Vol. 336, pp. 489-493.

79. Parekh V.V., Wilson M.T., Olivares-Villagomez D., Singh A.K., Wu L., Wang C.R., Joyce S., van Kaer L. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest., 2005, Vol. 115, no. 9, pp. 2572-2583.

80. Reantragoon R., Corbett A.J., Sakala I.G., Gherardin N.A., Furness J.B., Chen Z., Eckle S.B., Uldrich A.P., Birkinshaw R.W., Patel O., Kostenko L., Meehan B., Kedzierska K., Liu L., Fairlie D.P., Hansen T.H., Godfrey D.I., Rossjohn J., McCluskey J., Kjer-Nielsen L. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med., 2013, Vol. 210, pp. 2305-2320.

81. Rider P., Voronov E., Dinarello C.A., Apte R.N., Cohen I. Alarmins: Feel the Stress. J. Immunol., 2017, Vol. 198, pp. 1395-1402.

82. Riva A., Patel V., Kurioka A., Jeffery H.C., Wright G., Tarff S., Shawcross D., Ryan J.M., Evans A., Azarian S., Bajaj J.S., Fagan A., Patel V., Mehta K., Lopez C., Simonova M., Katzarov K., Hadzhiolova T., Pavlova S., Wendon J.A., Oo Y.H., Klenerman P., Williams R., Chokshi S. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut, 2018, Vol. 67, no. 5, pp. 918-930.

83. Rolf J., Berntman E., Stenström M., Smith E.M., Månsson R., Stenstad H., Yamagata T., Agace W., Sigvardsson M., Cardell S.L. Molecular profiling reveals distinct functional attributes of CD1d-restricted natural killer (NK) T cell subsets. Mol. Immunol., 2008, Vol. 45, pp. 2607-2620.

84. Rouxel O., Da Silva J., Beaudoin L., Nel I., Tard C., Cagninacci L., Kiaf B., Oshima M., Diedisheim M., Salou M., Corbett A., Rossjohn J., McCluskey J., Scharfmann R., Battaglia M., Polak M., Lantz O., Beltrand J., Lehuen A. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol., 2017, Vol. 18, pp. 1321-1331.

85. Ruijing X., Mengjun W., Xiaoling Z., Shu P., Mei W., Yingcheng Z., Yuling H., Jinquan T. Ja33+ MAIT cells play a protective role in TNBS induced intestinal inflammation. Hepatogastroenterology, 2012, Vol. 59, pp. 762-767.

86. Salou M., Nicol B., Garcia A., Baron D., Michel L., Elong-Ngono A., Hulin P., Nedellec S., Jacq-Foucher M., le Frère F., Jousset N., Bourreille A., Wiertlewski S., Soulillou J.P., Brouard S., Nicot A.B., Degauque N., Laplaud D.A. Neuropathologic, phenotypic and functional analyses of mucosal associated Invariant T cells in multiple sclerosis. Clin. Immunol., 2016, Vol. 166-167, pp. 1-11.

87. Sandrock I., Ziętara N., Łyszkiewicz M., Oberdörfer L., Witzlau K., Krueger A., Prinz I. MicroRNA-181a/b-1 is not required for innate gammadelta NKT effector cell development. PLoS One, 2015, Vol. 10, no. 12, e0145010. doi: 10.1371/journal.pone.0145010.

88. Savage A.K., Constantinides M.G., Han J., Picard D., Martin E., Li B., Lantz O., Bendelac A. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity, 2008, Vol. 29, pp. 391-403.

89. Serriari N.-E., Eoche M., Lamotte L., Lion J., Fumery M., Marcelo P., Chatelain D., Barre A., Nguyen-Khac E., Lantz O., Dupas J.L., Treiner E. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol., 2014, Vol. 176, pp. 266-274.

90. Shah H.B., Devera T.S., Rampuria P., Lang G.A., Lang M.L. Type II NKT cells facilitate alum-sensing and humoral immunity. J. Leukoc. Biol., 2012, Vol. 92, pp. 883-893.

91. Sullivan Z.A., Khoury-Hanold W., Lim J., Smillie C., Biton M., Reis B.S., Zwick R.K., Pope S.D., Israni-Winger K., Parsa R., Philip N.H., Rashed S., Palm N., Wang A., Mucida D., Regev A., Medzhitov R. gamma delta T cells regulate the intestinal response to nutrient sensing. Science, 2021, Vol. 371, no. 6535, eaba8310. doi: 10.1126/science.aba8310.

92. Swamy M., Abeler-Dörner L., Chettle J., Mahlakõiv T., Goubau D., Chakravarty P., Ramsay G., Reis e Sousa C., Staeheli P., Blacklaws B.A., Heeney J.L., Hayday A.C. Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nat. Commun., 2015, Vol. 6, 7090. doi: 10.1038/ncomms8090.

93. Swarbrick G.M., Gela A., Cansler M.E., Null M.D., Duncan R.B., Nemes E., Shey M., Nsereko M., Mayanja-Kizza H., Kiguli S., Koh J., Hanekom W.A., Hatherill M., Lancioni C., Lewinsohn D.M., Scriba T.J., Lewinsohn D.A. Postnatal Expansion, Maturation, and Functionality of MR1T Cells in Humans. Front. Immunol., 2020, Vol. 11, 556695. doi: 10.3389/fimmu.2020.556695.

94. Terashima A., Watarai H., Inoue S., Sekine E., Nakagawa R., Hase K., Iwamura C., Nakajima H., Nakayama T., Taniguchi M. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med., 2008, Vol. 205, pp. 2727-2733.

95. Toubal A., Kiaf B., Beaudoin L., Cagninacci L., Rhimi M., Fruchet B., da Silva J., Corbett A.J., Simoni Y., Lantz O., Rossjohn J., McCluskey J., Lesnik P., Maguin E., Lehuen A. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun., 2020, Vol. 11, no. 1, 3755. doi: 10.1038/s41467-020-17307-0.

96. van Kaer L., Parekh V.V., Wu L. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products. Front. Immunol., 2015, Vol. 6, 226. doi:10.3389/fimmu.2015.00226.

97. Vogt S., Mattner J. NKT cells contribute to the control of microbial infections. Front. Cell. Infect. Microbiol., 2021, Vol. 11, 718350. doi: 10.3389/fcimb.2021.718350.

98. von Gerichten J., Lamprecht D., Opalka L., Soulard D., Marsching C., Pilz R., Sencio V., Herzer S., Galy B., Nordstrom V., Hopf C., Grone H.J., Trottein F., Sandhoff R. Bacterial immunogenic alpha-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J. Lipid Res., 2019, Vol. 60, no. 11, pp. 1892-1904.

99. Wang J., Cho S., Ueno A., Cheng L., Xu B.Y., Desrosiers M.D., Shi Y., Yang Y.. Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J. Immunol., 2008, Vol. 181, no. 4, pp. 2438-2445.

100. Wang J.J., Macardle C., Weedon H., Beroukas D., Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjogren’s syndrome patients. Eur. J. Immunol., 2016, Vol. 46, pp. 2444-2453.

101. Wei J.J., Kim H.S., Spencer C.A., Brennan-Crispi D., Zheng Y., Johnson N.M., Rosenbach M., Miller C., Leung D.H., Cotsarelis G., Leung T.H. Activation of TRPA1 nociceptor promotes systemic adult mammalian skin regeneration. Sci. Immunol., 2020, Vol. 5, no. 50, eaba5683. doi: 10.1126/sciimmunol.aba5683.

102. Wesley J.D., Tessmer M.S., Chaukos D., Brossay L. NK cell-like behavior of Valpha14i NK T cells during MCMV infection. PLoS Pathog., 2008, Vol. 4, e1000106. doi:10.1371/journal.ppat.1000106.

103. Wilharm A., Tabib Y., Nassar M., Reinhardt A., Mizraji G., Sandrock I., Heyman O., Barros-Martins J., Aizenbud Y., Khalaileh A., Eli-Berchoer L., Elinav E., Wilensky A., Forster R., Bercovier H., Prinz I., Hovav A.H. Mutual interplay between IL-17-producing gammadeltaT cells and microbiota orchestrates oral mucosal homeostasis. Proc. Natl Acad. Sci. USA, 2019, Vol. 116, no. 7, pp. 2652-2661.

104. Wingender G., Stepniak D., Krebs P., Lin L., McBride S., Wei B., Braun J., Mazmanian S.K., Kronenberg M. Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology, 2012, Vol. 143, no. 2, pp. 418-428.

105. Witherden D.A., Watanabe M., Garijo O., Rieder S.E., Sarkisyan G., Cronin S.J., Verdino P., Wilson I.A., Kumanogoh A., Kikutani H., Teyton L., Fischer W.H., Havran W.L. The CD100 receptor interacts with its plexin B2 ligand to regulate epidermal gammadelta T cell function. Immunity, 2012, Vol. 37, pp. 314-325.

106. Wolf B.J., Tatituri R.V., Almeida C.F., le Nours J., Bhowruth V., Johnson D., Uldrich A.P., Hsu F.F., Brigl M., Besra G.S., Rossjohn J., Godfrey D.I., Brenner M.B. Identification of a potent microbial lipid antigen for diverse NKT cells. J. Immunol., 2015, Vol. 195, pp. 2540-2551.

107. Yoshida S., Mohamed R.H., Kajikawa M., Koizumi J., Tanaka M., Fugo K., Otsuka N., Maenaka K., Yagita H., Chiba H., Kasahara M. Involvement of an NKG2D ligand H60c in epidermal dendritic T cell-mediated wound repair. J. Immunol., 2012, Vol. 188, pp. 3972-3979.

108. Zajonc D.M., Girardi E. Recognition of microbial glycolipids by natural killer T cells. Front. Immunol., 2015, Vol. 6, 400. doi: 10.3389/fimmu.2015.00400.

109. Zanvit P., Konkel J.E., Jiao X., Kasagi S., Zhang D.F., Wu R.Q., Chia C., Ajami N.J., Smith D.P., Petrosino J.F., Abbatiello B., Nakatsukasa H., Chen Q.M., Belkaid Y., Chen Z.J., Chen W.J. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat. Commun., 2015, Vol. 6, 8424. doi: 10.1038/ncomms9424.

110. Zeng D., Dick M., Cheng L., Amano M., Dejbakhsh-Jones S., Huie P., Sibley R., Strober S. Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines. J. Exp. Med., 1998, Vol. 187, pp. 525-536.

111. Zhang Y., Kong D., Wang H. Mucosal-Associated Invariant T cell in liver diseases Int. J. Biol. Sci., 2020, Vol. 16, рp. 460-470.

112. Zhao J., Weng X., Bagchi S., Wang C.R. Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc. Natl Acad. Sci. USA, 2014, Vol. 111, pp. 2674-2679.


Дополнительные файлы

Рецензия

Для цитирования:


Топтыгина А.П. Роль неканонических Т-клеток в гомеостазе и патологии. Медицинская иммунология. 2024;26(3):449-464. https://doi.org/10.15789/1563-0625-RON-2918

For citation:


Toptygina A.P. Role of non-canonical T cells in homeostasis and pathology. Medical Immunology (Russia). 2024;26(3):449-464. (In Russ.) https://doi.org/10.15789/1563-0625-RON-2918

Просмотров: 394


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)