Cytokine profile in patients with chronic myeloid leukemia
https://doi.org/10.15789/1563-0625-CPO-2851
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) is currently an important clinical problem in the management of patients with chronic myeloid leukemia (CML). Recent studies suggested that aberrant cytokine secretion may be among the BCR/ABL-independent mechanisms of resistance, thus contributing to the persistence of leukemic stem cells in spite of continuous targeted therapy. The aim of the study was to evaluate concentration of cytokines in the serum of patients with CML depending on the efficiency of therapy.
Quantitative determination of the cytokines (TNFα, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-17, IL-18, IFNα and VEGF) in blood serum of patients with chronic-phase CML (n = 84) and healthy subjects (n = 30) was performed using enzyme immunoassay (ELISA). The patients with CML were divided into 3 groups depending on the duration of therapy: group I, newly diagnosed patients (n = 10); group II, patients receiving therapy for < 12 months (n = 10); group III included patients receiving therapy for more than 12 months (n = 64).
The results of our study showed that cytokine concentration among CML patients significantly differed, depending on the duration of therapy. Significantly higher concentration of IL-17, IL-6, IL-1β, IL-10, IL-18, IL-2 and TNFα was found in group I compared with control group. Group II patients also demonstrated significantly higher concentrations of TNFα, IL-6, IL-10, IL-18 and IFNα by comparison with control group, as well as higher concentration of IFNα compared with in groups I and III. In group III, concentrations of IL-17, IL-1β, TNFα, IL-6, IL-10, IL-18 were significantly higher than in control group. When compared with group I, it was found that concentrations of IL-1β, IL-2 and IL-18 were significantly lower. A direct correlation was found between expression levels of chimeric BCR/ABL gene, (a marker of CML malignancy), and concentrations of IL-1β and IL-17. ROC-analysis demonstrated high-quality models which showed an association between achievement of major molecular response (MMR) and low serum concentrations of IL-1β, IL-6 and IL-17.
Hence, the results of our study have shown that determination of IL-1β, IL-6 and IL-17 concentrations may be a prognostic marker for assessing the efficiency of therapy and probability of achieving MMR in CML.
About the Authors
T. N. AleksandrovaRussian Federation
Tuiara N. Aleksandrova - Postgraduate Student, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University.
52 Krasny Ave Novosibirsk 630091
Phone/fax: +7 (924) 874-81-34
Competing Interests:
None
I. I. Mulina
Russian Federation
Inna I. Mulina - Head, Department of Hematology, Republican Hospital No. 1 – National Centre of Medicine.
Yakutsk
Competing Interests:
None
A. S. Lyamkina
Russian Federation
Anna S. Lyamkina - PhD (Medicine), Associate Professor, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University.
Novosibirsk
Competing Interests:
None
A. A. Studenikina
Russian Federation
Anastasia A. Studenikina - PhD (Medicine), Research Associate, Central Research Laboratory, Novosibirsk State Medical University; Research Associate, Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine.
Novosibirsk
Competing Interests:
None
N. A. Varaksin
Russian Federation
Nikolay A. Varaksin - Head of Laboratory, JSC Vector-Best.
Novosibirsk
Competing Interests:
None
E. S. Mikhaylova
Russian Federation
Elena S. Mikhaylova - Research Associate, Central Research Laboratory at the Novosibirsk State Medical University; Senior Research Associate, Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine.
Novosibirsk
Competing Interests:
None
T. I. Pospelova
Russian Federation
Tatyana I. Pospelova - PhD, MD (Medicine), Professor, Head, Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University.
Novosibirsk
Competing Interests:
None
A. I. Autenshlyus
Russian Federation
Alexander I. Autenshlyus - PhD, MD (Biology), Professor, Head, Central Research Laboratory; Main Research Associate, Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine.
Novosibirsk
Competing Interests:
None
References
1. Clinical quidelines. Chronic myeloid leukemia [Electronic resource]. Access mode: https://cr.minzdrav.gov.ru/recomend/142.
2. Sosnina A.V., Velikaya N.V., Varaksin N.A., Grishaev M.P., Autenshlus A.I. The role of cytokines in the pathogenesis of malignant tumors. Novosibirsk, 2014. 128 p.
3. Ågerstam H., Hansen N., von Palffy S., Sandén C., Reckzeh K., Karlsson C., Lilljebjörn H., Landberg N., Askmyr M., Högberg C., Rissler M., Porkka K., Wadenvik H., Mustjoki S., Richter J., Järås M., Fioretos T. IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models. Blood, 2016, Vol. 128, no. 23, рр. 2683-2693.
4. Fisher D.A.C., Fowles J.S., Zhou A., Oh S.T. Inflammatory pathophysiology as a contributor to myeloproliferative neoplasms. Front. Immunol., 2021, Vol. 12, 683401. doi: 10.3389/fimmu.2021.683401.
5. Greten F.R., Grivennikov S.I. Inflammation and cancer: triggers, mechanisms and consequences. Immunity, 2019, Vol. 51, no. 1, рр. 27-41.
6. Herrmann O., Kuepper M.K., Bütow M., Costa I.G., Appelmann I., Beier F., Luedde T., Braunschweig T., Koschmieder S., Brümmendorf T.H., Schemionek M. Infliximab therapy together with tyrosine kinase inhibition targets leukemic stem cells in chronic myeloid leukemia. BMC Cancer, 2019, Vol. 19, no. 1, 658. doi: 10.1186/s12885-019-5871-2.
7. Hochhaus A., Baccarani M., Silver R.T., Schiffer C., Apperley J.F., Cervantes F., Clark R.E., Cortes J.E., Deininger M.W., Guilhot F., Hjorth-Hansen H., Hughes T.P., Jannsen J.J.W.M., Kantarjian H.M., Kim D.W., Larson R.A., Lipton J.H., Mahon F.X., Mayer J., Nicolini F., Niederwieser D., Pane F., Radich J.P., Rea D., Richter J., Rosti G., Rousselot P., Saglio G., Saußele S., Soverini S., Steegmann J.L., Turkina A., Zaritskey A., Hehlmann R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 2020, Vol. 34, pp. 966-984.
8. Kvasnicka H.M., Thiele J., Staib P., Schmitt-Graeff A., Griesshammer M., Klose J., Engels K., Krieneret S. Reversal of bone marrow angiogenesis in chronic myeloid leukemia following imatinib mesylate (STI571) therapy. Blood, 2004, Vol. 103, pp. 3549-3551.
9. Lan T., Chen L., Wei X. Inflammatory cytokines in cancer: comprehensive understanding and clinical progress in gene therapy. Cells, 2021, Vol. 10, no. 1, 100. doi: 10.3390/cells10010100.
10. Luciano M., Krenn P.W., Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front. Immunol., 2022, Vol. 13, 1000996. doi: 10.3390/cells10010100.
11. Masselli E., Pozzi G., Gobbi G., Merighi S., Gessi S., Vitale M., Carubbi C. Cytokine profiling in myeloproliferative neoplasms: overview on phenotype correlation, outcome prediction, and role of genetic variants. Cells, 2020, Vol. 9, no. 9, 2136. doi: 10.3390/cells9092136.
12. Mikkola T., Almahmoudi R., Salo T., Al-Samadi A. Variable roles of interleukin-17F in different cancers. BMC Cancer, 2022, Vol. 22, no. 1, 54. doi: 10.1186/s12885-021-08969-0.
13. Nievergall E., Reynolds J., Kok C.H., Watkins D.B., Biondo M., Busfield S.J., Vairo G., Fuller K., Erber W.N., Sadras T., Grose R., Yeung D.T., Lopez A.F., Hiwase D.K., Hughes T.P., White D.L. TGF-α and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia, 2016, Vol. 30, no. 6, рр. 1263-1272.
14. Reynaud D., Pietras E., Barry-Holson K., Mir A., Binnewies M., Jeanne M., Sala-Torra O., Radich J.P., Passegué E. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell, 2011, Vol. 20, no. 5, рр. 661-673.
15. Riether C., Schürch C.M., Ochsenbein A.F. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ., 2015, Vol. 22, no. 2, рр. 187-198.
16. Saraiva M., Vieira P., O’Garra A. Biology and therapeutic potential of interleukin-10. J. Exp. Med., 2020, Vol. 217, no. 1, e20190418. doi: 10.1084/jem.20190418.
17. Shah M., Bhatia R. Preservation of quiescent chronic myelogenous leukemia stem cells by the bone marrow microenvironment. Adv. Exp. Med. Biol., 2018, Vol. 1100, pp. 97-110.
18. Sharma K., Singh U., Rai M., Shukla J., Gupta V., Narayan G., Kumar S. Interleukin 6 and disease transformation in chronic myeloid leukemia: A Northeast Indian population study. J. Cancer Res. Ther., 2020, Vol. 16, no. 1, рр. 30-33.
19. Shen N., Liu S., Cui J., Li Q., You Y., Zhong Z., Cheng F., Guo A.Y., Zou P., Yuan G., Zhu X. Tumor necrosis factor α knockout impaired tumorigenesis in chronic myeloid leukemia cells partly by metabolism modification and miRNA regulation. Onco Targets Ther., 2019, Vol. 29, no. 12, р. 2355-2364.
20. Zhang B., Ho Y.W., Huang Q., Maeda T., Lin A., Lee S.U., Hair A., Holyoake T.L., Huettner C., Bhatia R. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell, 2012, Vol. 21, no. 4, pp. 577-592.
21. Zhao J., Chen X., Herjan T., Li X. The role of interleukin-17 in tumor development and progression. J. Exp. Med., 2020, Vol. 217, no. 1, е20190297. doi: 10.1084/jem.20190297.
Supplementary files
Review
For citations:
Aleksandrova T.N., Mulina I.I., Lyamkina A.S., Studenikina A.A., Varaksin N.A., Mikhaylova E.S., Pospelova T.I., Autenshlyus A.I. Cytokine profile in patients with chronic myeloid leukemia. Medical Immunology (Russia). 2024;26(2):329-336. (In Russ.) https://doi.org/10.15789/1563-0625-CPO-2851