Preview

Medical Immunology (Russia)

Advanced search

Assessing the impact of a rare synonymous variant in the KNG1 gene on the development of hereditary angioedema

https://doi.org/10.15789/1563-0625-ATI-2840

Abstract

The main cause of edema in hereditary angioedema (HAE) is due to elevated bradykinin levels, caused either by C1-INH deficiency/change in functional activity and caused by mutations in the SERPING1 gene or by mutations in the F12, PLG, ANGPT1, KNG1, MYOF and HS3ST6 genes with a normal level and functionality of the C1-esterase inhibitor. The aim of the work was in silico prognostic analysis of the rare synonymous variant NC_000003.12:g.186725098T>C in the KNG1 gene and its impact on the development of HAE symptoms. The material was a whole blood sample obtained from a woman with clinical manifestations of hereditary angioedema without a decrease in the levels and function of the C1 inhibitor. The research methods included whole exome sequencing, bioinformatic analysis of the KNG1 gene mutation using a number of databases and web resources. Results. When processing full-exome sequencing data, we detected a synonymous variant in the KNG1 gene (exon 4, isoform 1): NC_000003.12:g.186725098T>C. The patient is a heterozygous carrier of the variant, with a frequency of 0.000004 (1:264690). Presumably, the identified variant can lead to the development of sporadic edema through several pathways that are associated with the formation of bradykinin or its analogues. Therefore, (1) the mutant high-molecular-weight kininogen is more easily activated by kallikrein and becomes a source of bradykinin formation through the kallikrein-kinin system; (2) the mechanism of bradykinin formation undergoes significant changes and results in the formation of functionally active but aberrant bradykinin, which alters its inactivation by enzymes with a consequent increase in its half-life, (3) the changes in positions 380-389 bring about modifications in Lys-bradykinin reproduction such that in subsequent steps it is “easily” cleaved to bradykinin by arginine aminopeptidase. The results of our study therefore indicate a possible role of the identified variant in the KNG1 gene in the development of HAE.

About the Authors

N. A. Pechnikova
Saint Petersburg Pasteur Institute; St. Petersburg State University
Russian Federation

Pechnikova Nadezhda Alexandrovna, Junior Research Associate, Laboratory of Immunology and Virology HIV

St. Petersburg


Competing Interests:

Нет



Yu. V. Ostankova
Saint Petersburg Pasteur Institute
Russian Federation

Ostankova Yulia V., PhD (Biology), Head, Laboratory of Immunology and Virology HIV, Senior Research Associate, Laboratory of Molecular Immunology

Address for correspondence:
Yulia V. Ostankova
Saint Petersburg Pasteur Institute
 14 Mira St

St. Petersburg
197101 Russian Federation
Phone: +7 (812) 233-20-92.


Competing Interests:

Нет



M. A. Saitgalina
Saint Petersburg Pasteur Institute
Russian Federation

Saitgalina Maria Alexandrovna, Junior Research Associate, Laboratory of Molecular Immunology

St. Petersburg


Competing Interests:

Нет.



A. M. Bebyakov
Saint Petersburg Pasteur Institute
Russian Federation

Bebyakov Alexander Mikhailovich, Laboratory Research Assistant, Laboratory of Immunology and Virology HIV

St. Petersburg


Competing Interests:

Нет



A. A. Totolian
Saint Petersburg Pasteur Institute; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Totolian Areg Artemovich, PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Head, Laboratory of Molecular Immunology, Director of Saint Petersburg Pasteur Institute; Head, Department of Immunology, First St. Petersburg State I. Pavlov Medical University

St. Petersburg


Competing Interests:

Нет



References

1. Ariano A., D’Apolito M., Bova M., Bellanti F., Loffredo S., D’Andrea G., Intrieri M., Petraroli A., Maffione A.B., Spadaro G., Santacroce R., Margaglione M. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy, 2020, Vol. 75, no. 11, pp. 2989-2992.

2. Bork K., Brehler R., Witzke G., Boor S., Heineke W., Hardt J. Blindness, tetraspasticity, and other signs of irreversible brain damage in hereditary angioedema. Ann. Allergy Asthma Immunol., 2017, Vol. 118, no. 4, pp. 520-521.

3. Bork K., Wulff K., Möhl B.S., Steinmüller-Magin L., Witzke G., Hardt J., Meinke P. Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J. Allergy Clin. Immunol., 2021, Vol. 148, no. 4, pp. 1041-1048.

4. Busse P.J., Christiansen S.C. Hereditary Angioedema. N. Engl. J. Med., 2020, Vol. 382, pp. 1136-1148.

5. Kulkarni M., Travers J.B., Rohan C. High estrogen states in hereditary angioedema: a spectrum. Clin. Rev. Allergy Immunol., 2021, Vol. 60, no. 3, pp. 396-403.

6. Leeb-Lundberg L.M.F., Marceau F., Muller-Esterl W., Pettibone D.J., Zuraw B.L. International Union of Pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev, 2005, Vol. 57, no. 1, pp. 27-77.

7. Longhurst H.J., Bork K. Hereditary angioedema: an update on causes, manifestations and treatment. Br. J. Hosp. Med. (Lond.), 2019, Vol. 80, no. 7, pp. 391-398.

8. Marceau F., Hess J.F., Bachvarov D.R. The B1 receptors for kinins. Pharmacol. Rev., 1998, Vol. 50, pp. 357-386.

9. Minafra F.G., Gonçalves T.R., Alves T.M., Pinto J.A. The mortality from hereditary angioedema worldwide: a review of the real-world data literature. Clin. Rev. Allergy Immunol., 2022, Vol. 62, pp. 232-239.

10. Nordenfelt P., Nilsson M., Björkander J., Mallbris L., Lindfors A., Wahlgren C.-F. Hereditary angioedema in swedish adults: report from the national cohort. Acta Derm. Venereol., 2016, Vol. 96, no. 4, pp. 540-545.

11. Papadopoulou-Alataki E. Upper airway considerations in hereditary angioedema. Curr. Opin. Allergy Clin. Immunol., 2010, Vol. 10, no. 1, pp. 20-25.

12. Pechnikova N.A., Ostankova Yu.V., Saitgalina M.A., Bebyakov A.M., Denisova A.R., Podchernyaeva N.S., Totolian A.A. Applying bioinformatic analysis for prognostic assessment of the HS3ST6 missense mutations clinical significance in the development of hereditary angioedema. Medical Immunology (Russia), 2023, Vol. 25, no. 1, pp. 135-154. (In Russ.) doi: 10.15789/1563-0625-ABA-2577.

13. Pechnikova N.A., Ostankova Yu.V., Saitgalina M.A., Bebyakov A.M., Denisova A.R., Totolian Areg A. Pathogenicity analysis of the new missense mutation in the MYOF gene detected in a female patient with hereditary angioedema with normal level of С1-inhibitor. Pediatria n. a. G.N. Speransky, 2023, Vol. 102, no. 2, pp. 139-146.

14. Rosi-Schumacher M., Shah S.J., Craig T., Goyal N. Clinical manifestations of hereditary angioedema and a systematic review of treatment options. Laryngoscope Investig. Otolaryngol., 2021, Vol. 6, no. 3, pp. 394-403.

15. Steinhaus R., Proft S., Schuelke M., Cooper D.N., Schwarz J.M., Seelow D. MutationTaster2021. Nucleic Acids Res., 2021, Vol. 49, no. W1, pp. W446-W451.


Supplementary files

Review

For citations:


Pechnikova N.A., Ostankova Yu.V., Saitgalina M.A., Bebyakov A.M., Totolian A.A. Assessing the impact of a rare synonymous variant in the KNG1 gene on the development of hereditary angioedema. Medical Immunology (Russia). 2024;26(1):203-210. https://doi.org/10.15789/1563-0625-ATI-2840

Views: 244


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)