Determination of reference values for TREC and KREC in circulating blood of the persons over 18 years
https://doi.org/10.15789/1563-0625-DOR-2587
Abstract
Increasing attention is being paid to methods for detecting primary and secondary T and/or B cell immunodeficiencies. Their implementation into laboratory diagnostics would contribute to the early diagnostics of immunodeficiencies. Currently, the number of identified adult patients with immunodeficiencies of various origins is steadily increasing. Age, gender and ethnicity of patients may be significant factors of immunity. Hence, determination of the population reference intervals for TREC and KREC DNA excision rings in peripheral blood of adult persons is an urgent laboratory task for in-depth examination of both congenital and acquired immunodeficiency conditions. Our purpose was to determine the reference intervals for the quantitative assay of TREC and KREC fragments in peripheral blood among the adult population of St. Petersburg. We studied whole blood samples obtained from 717 apparently healthy volunteers aged 18 to 108 years within the program of population immunity assessment among residents of St. Petersburg. The exclusion criterion included immunodeficiency of any origin, viral hepatitis A, B, C, HIV infection. Quantitation of the target TREC and KREC DNA fragments was carried out using a set of reagents for the quantitative determination of excisional rings TREC and KREC by Real-time PCR (TREC/KREC-AMP PS). The reference intervals were determined by the direct method according to the recommendations of the International Federation of Clinical Chemistry and the Russian State Standard (GOST) R 53022.3-2008. The volunteers were divided into six age groups: 18-29, 30-39, 40-49, 50-59, 60-69 years old, and the persons over 70. The amounts of TREC and KREC in each blood sample were determined for all age groups. Upon correlation analysis, we have revealed a negative relationship between the concentration of TREC molecules in blood samples, and the age of study participants (Spearman correlation coefficient r = -0.80 (p-value < 0.0001)). Significant differences in TREC levels between different age groups were revealed. No correlations were detected between KREC contents in blood samples and age as well as any differences between age groups. Reference intervals of the TREC level were determined for each mentioned age group. A unified reference range was established for the KREC levels. The established reference intervals for TREC and KREC molecules in adults are significantly lower than in newborns. The obtained results enable determination of reference intervals for TREC and KREC levels among adults, thus contributing to effective personalized laboratory diagnosis of immunodeficiency states of various origins.
About the Authors
M. A. SaitgalinaRussian Federation
Saitgalina Maria A., Junior Research Associate, Laboratory of Molecular Immunology Saint Petersburg Pasteur Institute
197101, St. Petersburg, Mira str., 14
N. E. Liubimova
Russian Federation
Liubimova Natalia E., PhD (Biology), Research Associate, Laboratory of Molecular Immunology
St. Petersburg
Yu. V. Ostankova
Russian Federation
Ostankova Yulia V., PhD (Biology), Head, Laboratory of Immunology and Virology HIV, Senior Research Associate, Laboratory of Molecular Immunology
St. Petersburg
R. N. Kuznetzova
Russian Federation
Kuznetsova Raisa N., PhD (Medicine), Clinical Immunologist, Saint Petersburg Pasteur Institute; Associate Professor, Department of Immunology, First St. Petersburg State I.Pavlov Medical University
St. Petersburg
A. A. Totolian
Russian Federation
Totolian Areg A., PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Head, Laboratory of Molecular Immunology, Director, Saint Petersburg Pasteur Institute; Head, Department of Immunology, First St. Petersburg State I. Pavlov Medical Universit
St. Petersburg
References
1. GOST R 53022.3-2008. Clinical laboratory technologies. Requirements for the quality of clinical laboratory research. Part 3. Rules for assessing the clinical informativeness of laboratory tests. Introduction 2010-01-01]. Moscow: Standart inform, 2009. 19 p.
2. Evgina S.A., Saveliev L.I. Сurrent theory and practice of reference interval. Laboratornaya sluzhba = Laboratory Service, 2019, Vol. 8, no. 2, pp. 36-44. (In Russ.)
3. Сlinical guidelines. Primary immunodeficiencies predominantly with antibody deficiency (D80- D 80.9; D83 – D83.2; D83.8; D83.9). 2018. [Electronic resourse]. Access mode: https://nrcii.ru/specialistam/klinrecommend/pid.pdf.
4. Saitgalina M.A., Ostankova Yu.V., Liubimova N.E., Semenov A.V., Kuznetsova R.N., Totolian Areg A. Modified method for quantitative determination of TREC and KREC levels in peripheral blood in patients with immunodeficiency states. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, Vol. 12, no. 5, pp. 981-996. (In Russ.) doi: 10.15789/2220-7619-MMF-2039.
5. Tuzankina I.A., Karakina M.L., Vlasova E.V. Analysis of the clinical manifestations of the onset of primary immunodeficiencies in adults. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, Vol. 4, no. 16, pp. 367-374. (In Russ.) doi: 10.15789/1563-0625-2014-4-367-374.
6. Yarilin A.A. Immunology. Moscow: GEOTAR-Media, 2010, pp. 251-260.
7. Argudo-Ramírez A., Martín-Nalda A., Marín-Soria J.L., López-Galera R.M., Pajares-García S., González de Aledo-Castillo J.M., Martínez-Gallo M., García-Prat M., Colobran R., Riviere J.G., Quintero Y., Collado T., García-Villoria J., Ribes A., Soler-Palacín P. First Universal Newborn Screening Program for Severe Combined Immunodeficiency in Europe. Two-Years’ Experience in Catalonia (Spain). Front. Immunol., 2019, Vol. 10, 2406. doi:10.3389/fimmu.2019.02406.
8. Brown J.J., Datta V., Browning M.J., Swift P.G.F. Graves’ disease in DiGeorge syndrome: patient report with a review of endocrine autoimmunity associated with 22q11.2 deletion. J. Pediatr. Endocrinol. Metab., 2004, Vol. 17, pp. 1575-1579.
9. CLSI Document C28-A3c. Defining, establishing, and verifying reference intervals in the clinical laboratory. Approved guideline. Third edition. Wayne. Pa. USA: CLSI. 2010. Available at: https://clsi.org/media/1421/ep28a3c_sample.pdf.
10. Dar N., Gothelf D., Korn D., Frisch A., Weizman A., Michaelovsky E., Carmel M., Yeshayahu Y., DubnovRaz G., Pessach I.M., Simon A.J., Lev A., Somech R. Thymic and bone marrow output in individuals with 22q11.2 deletion syndrome. Pediatr. Res., 2015, Vol. 4, no. 7, pp. 579-585.
11. di Renzo M., Pasqui A.L., Auteri A. Common variable immunodeficiency: a review. Clin. Exp. Med., 2004, Vol. 3, no. 4, pp. 211-217.
12. Garcia-Prat M., Álvarez-Sierra D., Aguiló-Cucurull A., Salgado-Perandrés S., Briongos-Sebastian S., Franco-Jarava C., Martin-Nalda A., Colobran R., Montserrat I., Hernández-González M., Pujol-Borrell R., SolerPalacin P., Martínez-Gallo M. Extended immunophenotyping reference values in a healthy pediatric population. Cytometry B Clin. Cytom., 2019, Vol. 96, no. 3, pp. 223-233.
13. Gathmann B. The European internet-based patient and research database for primary immunodeficiencies: update 2011. Clin. Exp. Immunol., 2012, Vol. 167, no. 3, pp. 479-491.
14. Hazenberg M.D., Verschuren M.C., Hamann D., Miedema F., van Dongen J.J. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J. Mol. Med., 2001, Vol. 79, no. 11, pp. 631-640.
15. Jung D., Alt F.W. Unraveling V(D)J recombination; insights into gene regulation. Cell, 2004, Vol. 116, no. 2, pp. 299-311.
16. Just H.L., Deleuran M., Vestergaard C., Deleuran B., Thestrup-Pedersen K. T-cell receptor excision circles (TREC) in CD4+ and CD8+ T-cell subpopulations in atopic dermatitis and psoriasis show major differences in the emission of recent thymic emigrants. Acta Derm. Venereol., 2008, Vol. 88, no. 6, pp. 566-572.
17. Kamae C., Nakagawa N., Sato H., Honma K., Mitsuiki N., Ohara O., Kanegane H., Pasic S., PanHammarström Q., van Zelm M.C., Morio T., Imai K., Nonoyama S. Common variable immunodeficiency classification by quantifying T-cell receptor and immunoglobulin κ-deleting recombination excision circles. J. Allergy Clin. Immunol., 2013, Vol. 131, no. 5, pp. 1437-1440.
18. Kwok J.S.Y., Cheung S.K.F., Ho J.C.Y., Tang I.W.H., Chu P.W.K., Leung E.Y.S. Establishing simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) quantification assays and laboratory reference intervals in healthy individuals of different age groups in Hong Kong. Front. Immunol., 2020, Vol. 11, 1411. doi: 10.3389/fimmu.2020.01411.
19. Lucas M., Lee M., Lortan J., Lopez-Granados E., Misbah S., Chapel H. J. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J. Allergy Clin. Immunol., 2010, Vol. 125, no. 6, pp. 1354-1360.
20. Naylor K., Li G., Vallejo A.N., Lee W.W., Koetz K., Bryl E. The influence of age on T cell generation and TCR diversity. J. Immunol., 2005, Vol. 174, no. 11, pp. 7446-7452.
21. Peyvandi S., Lupo P.J., Garbarini J. 22q11.2 deletion in patients with conotruncal defects: data from 1610 consecutive cases. Pediatr. Cardiol., 2013, Vol. 34, no. 7, pp. 1687-1694.
22. Pido-Lopez J., Imami N., Aspinall R. Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin. Exp. Immunol., 2001, Vol. 125, no. 3, pp. 409-413.
23. Quinti I., Soresina A., Spadaro G., Martino S., Donnanno S., Agostini C. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J. Clin. Immunol., 2007, Vol. 27, no. 3, pp. 308-316.
24. Siest G., Henny J., Grasbeck R., Wilding P., Petitclerc C., Queralto J., Petersen P. The theory of reference values: an unfinished symphony. CCLM, 2013, Vol. 51, no. 1, pp. 47-64.
25. Sottini A., Serana F., Bertoli D., Chiarini M., Valotti M., Vaglio Tessitore M., Lmberti L. Simultaneous quantification of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) by real-time PCR. J. Vis. Exp., 2014, Vol. 94, 52184. doi: 10.3791/52184.
26. Tangye S.G., Al-Herz W., Bousfiha A., Chatila T., Cunningham-Rundles C., Etzioni A. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J. Clin. Immunol., 2020, Vol. 40, no. 1, pp. 24-64.
27. Törlén J., Gaballa A., Remberger M., Mörk L.M., Sundberg B., Mattsson J., Uhlin M. Effect of graftversus-host disease prophylaxis regimens on T and B cell reconstitution after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant., 2019, Vol. 25, no. 6, pp. 1260-1268.
28. Tuano K.S., Seth N., Chinen J. Secondary immunodeficiencies: An overview. Ann. Allergy Asthma Immunol., 2021, Vol. 127, no. 6, pp. 617-626.
29. Urm S.H. Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population based case control study. Mayo Clin. Proc., 2013, Vol. 88, no. 8, pp. 813-821.
30. Vadamalai K. Screening for humoral immunodeficiency in patients with community-acquired pneumonia. J. Hosp. Med., 2019, Vol. 14, no. 1, pp. 33-37.
31. van Zelm M.C., van der Burg M., Langerak A.W., van Dongen J.J. PID comes full circle: applications of V(D) J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol., 2011, Vol. 2, 12. doi: 10.3389/fimmu.2011.00012.
32. Verbsky J.W. Newborn screening for severe combined immunodeficiency; The wisconsin experience (2008- 2011). J. Clin. Immunol., 2012, Vol. 32, no. 1, pp. 82-88.
33. Verma N. Therapeutic management of primary immunodeficiency in older patients. Drugs Aging, 2013, Vol. 30, no. 7, pp. 503-512.
34. Verstegen R.H.J. Impact of Down syndrome on the performance of neonatal screening assays for severe primary immunodeficiency diseases. J. Allergy Clin. Immunol., 2014, Vol. 133, no. 4, pp. 1208-1211.
35. Zhao Q., Dai R., Li Y., Wang Y., Chen X., Shu Z., Zhou L., Ding Y., Tang X., Zhao X. Trends in TREC values according to age and gender in Chinese children and their clinical applications. Eur. J. Pediatr., 2022, Vol. 181, no. 2, pp. 529-538.
Supplementary files
Review
For citations:
Saitgalina M.A., Liubimova N.E., Ostankova Yu.V., Kuznetzova R.N., Totolian A.A. Determination of reference values for TREC and KREC in circulating blood of the persons over 18 years. Medical Immunology (Russia). 2022;24(6):1227-1236. (In Russ.) https://doi.org/10.15789/1563-0625-DOR-2587