1. Bedoya S.K., Lam B., Lau K., Larkin J.3rd. Th17 cells in immunity and autoimmunity. Clin. Dev. Immunol., 2013, Vol. 2013, 986789. https://doi.org/10.1155/2013/986789.
2. Beurel E., Lowell J.A. Th17 cells in depression. Brain Behav. Immun., 2018, Vol. 69, pp. 28-34.
3. Bogerts B. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr. Bull., 1997, Vol. 23, no. 3, pp. 423-435.
4. Borovcanin M.M., Minic Janicijevic S., Jovanovic I.P., Gajovic N.M., Jurisevic M.M., Arsenijevic N.N. Type 17 Immune response facilitates progression of inflammation and correlates with cognition in stable schizophrenia. Diagnostics (Basel), 2020, Vol. 10, no. 11, 926. https://doi.org/10.3390/diagnostics10110926.
5. Chen J., Liu X., Zhong Y. Interleukin-17A: The key cytokine in neurodegenerative diseases. Front. Aging Neurosci., 2020, Vol. 12, 566922. https://doi.org/10.3389/fnagi.2020.566922.
6. Chenniappan R., Nandeesha H., Kattimani S., Nanjaiah N.D. Interleukin-17 and Interleukin-10 association with disease progression in schizophrenia. Ann. Neurosci., 2020, Vol. 27, no. 1, pp. 24-28.
7. Cipollini V., Anrather J., Orzi F., Iadecola C. Th17 and cognitive impairment: possible mechanisms of action. Front. Neuroanat., Vol. 2019, no. 13, 95. https://doi.org/10.3389/fnana.2019.00095.
8. Corsi-Zuelli F.M.D.G., Brognara F., Quirino G.F.D.S., Hiroki C.H., Fais R.S., Del-Ben C.M., Ulloa L., Salgado H.C., Kanashiro A., Loureiro C.M. Neuroimmune interactions in schizophrenia: focus on vagus nerve stimulation and activation of the Alpha-7 nicotinic acetylcholine receptor. Front. Immunol., 2017, Vol. 8, 618. https://doi.org/10.3389/fimmu.2017.00618.
9. de Witte L.D., van Mierlo H.C., Litjens M., Klein H.C., Bahn S., Osterhaus A. D., and GROUP Investigators. The association between antibodies to neurotropic pathogens and schizophrenia: a case-control study. NPJ Schizophr., 2015, Vol. 1, 15041. https://doi.org/10.1038/npjschz.2015.41.
10. Eftekharian M.M., Omrani M.D., Arsang-Jang S., Taheri M., Ghafouri-Fard S. Serum cytokine profile in schizophrenic patients. Hum. Antibodies, 2019, Vol. 27, no. 1, pp. 23-29.
11. El Kissi Y., Samoud S., Mtiraoui A., Letaief L., Hannachi N., Ayachi M., Ali B., Boukadida J. Increased Interleukin-17 and decreased BAFF serum levels in drug-free acute schizophrenia. Psychiatry Res., 2015, Vol. 225, no. 1-2, pp. 58-63.
12. Goldsmith D.R., Rapaport M.H., Miller B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry., 2016, Vol. 21, no. 12, pp. 1696-1709.
13. International Schizophrenia Consortium, Purcell S.M., Wray N.R., Stone J.L., Visscher P.M., O’Donovan M.C., Sullivan P.F., Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, Vol. 460, no. 7256, pp. 748-752.
14. Kaladjian A., Belzeaux R., Adida M., Azorin J.M. Negative symptoms and cerebral imaging. Encephale, 2015, Vol. 4, no. 6, Suppl 1, pp. 6S22-6S26.
15. Koike S., Sakakibara E., Satomura Y., Sakurada H., Yamagishi M., Matsuoka J., Okada N., Kasai K. Shared functional impairment in the prefrontal cortex affects symptom severity across psychiatric disorders. Psychol. Med., 2020, Vol. 18, pp. 1-10.
16. Liu Q., Xin W., He P., Turner D., Yin J., Gan Y., Shi F.D., Wu J. Interleukin-17 inhibits adult hippocampal neurogenesis. Sci. Rep., 2014, Vol. 4, 7554. https://doi.org/10.1038/srep07554.
17. Malashenkova I.K., Krynskiy S.A., Ogurtsov D.P., Mamoshina M.V., Zakharova N.V., Ushakov V.L., Velichkovsky B.M., Didkovsky N.A. A role of the immune system in the pathogenesis of schizophrenia. S. Korsakov Journal of Neurology and Psychiatry, 2018, Vol. 118, no. 12, pp. 72-80. [In Russ.]
18. Malashenkova I.K., Ushakov V.L., Krynskiy S.A., Ogurtsov D.P., Khailov N.A., Zakharova N.V., Chekulaeva E.I., Orlov V.A., Kartashov S.I., Andreyuk D.S., Didkovsky N.A., Kostyuk G.P. The relationship of morphometric changes of the brain with IL-6 levels, systemic inflammation and immune disturbances in the patients with schizophrenia. Procedia Computer Science, 2021, Vol. 190, pp. 553-559.
19. Malashenkova I.K., Ushakov V.L., Zakharova N.V., Krynskiy S.A., Ogurtsov D.P., Hailov N.A., Chekulaeva E.I., Ratushnyy A.Y., Kartashov S.I., Kostyuk G.P., Didkovsky N.A. Neuro-immune aspects of schizophrenia with severe negative symptoms: new diagnostic markers of disease phenotype. Modern Technologies in Medicine, 2021, Vol. 13, no. 6, pp. 24-33.
20. McKenna P.J. What works in schizophrenia: cognitive behaviour therapy is not effective. BMJ, 2006, Vol. 333, no. 7563, 353. https://doi.org/10.1136/bmj.333.7563.353-a.
21. Miller B.J., Buckley P., Seabolt W., Mellor A., Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry, 2011, Vol. 70, no. 7, pp. 663-671.
22. Nazli Ş.B., Koçak O.M., Kirkici B., Sevındık M., Kokurcan A. Investigation of the processing of noun and verb words with fMRI in patients with schizophrenia. Noro Psikiyatr. Ars., 2019, Vol. 57, no. 1, pp. 9-14.
23. Neugebauer K., Hammans C., Wensing T., Kumar V., Grodd W., Mevissen L., Sternkopf M.A., Novakovic A., Abel T., Habel U., Nickl-Jockschat T. Nerve growth factor serum levels are associated with regional gray matter volume differences in schizophrenia patients. Front. Psychiatry, 2019, Vol. 10, 275. https://doi.org/10.3389/fpsyt.2019.00275.
24. Potvin S., Stip E., Sepehry A.A., Gendron A., Bah R., Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry, 2008, Vol. 63, no. 8, pp. 801-808.
25. Ruzzo E.K., Geschwind D.H. Schizophrenia genetics complements its mechanistic understanding. Nat Neurosci., 2016, Vol. 19, no. 4, pp. 523-525.
26. Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R., Ransohoff R.M., Greenberg M.E., Barres B.A., Stevens B. Microglia sculpt postnatal neural circuits in an activity and complementdependent manner. Neuron, 2012, Vol. 74, no. 4, pp. 691-705.
27. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet., 2011, Vol. 43, no. 10, pp. 969-976.
28. Sekar A., Bialas A.R., de Rivera H., Davis A., Hammond T.R., Kamitaki N., Tooley K., Presumey J., Baum M., van Doren V., Genovese G., Rose S.A., Handsaker R.E., Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly M.J., Carroll M.C., Stevens B., McCarroll S.A. Schizophrenia risk from complex variation of complement component 4. Nature, 2016, Vol. 530, no. 7589, pp. 177-183.
29. Steines M., Nagels A., Kircher T., Straube B. The role of the left and right inferior frontal gyrus in processing metaphoric and unrelated co-speech gestures. Neuroimage, 2021, Vol. 15, no. 237, 118182. https://doi.org/10.1016/j.neuroimage.2021.118182.
30. Takayanagi Y., Sasabayashi D., Takahashi T., Furuichi A., Kido M., Nishikawa Y., Nakamura M., Noguchi K., Suzuki M. Reduced cortical thickness in schizophrenia and schizotypal disorder. Schizophr. Bull., 2020, Vol. 46, no. 2, pp. 387-394.
31. Rostami A., Ciric B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J. Neurol. Sci., 2013, Vol. 333, no. 1-2, pp. 76-87.
32. Waisman A., Hauptmann J., Regen T. The role of IL-17 in CNS diseases. Acta Neuropathol., 2015, Vol. 129, no. 5, pp. 625-637.