Preview

Medical Immunology (Russia)

Advanced search

Role of cytokines in hepatocellular carcinoma

https://doi.org/10.15789/1563-0625-ROC-2512

Abstract

Liver cancer ranks No. 5 in the world among all types of cancer and takes 3rd position among cancer-related deaths. Hepatocellular carcinoma (HCC) is a primary malignancy which does not include liver metastases from other sites. It is the most common form of liver cancers, and one of the leading causes of cancer-related deaths worldwide. HCC includes genetically and morphologically heterogeneous group of malignant tumors. HCC is characterized by a gender predisposition, namely, it occurs in men 1.5-fold more often, than in women. Viral infections such as hepatitis B and C are major risk factors for HCC. Moreover, non-alcoholic steatohepatitis (NASH) associated with metabolic syndrome and type 2 diabetes also becomes an increasingly common risk factor in developed countries. The mechanisms underlying the development of HCC are based on genetic changes in tumor cells and their microenvironment. Recently, the role of changes in the tumor microenvironment has drawn more attention, thus becoming the key characteristic in the HCC pathogenesis at all stages of the malignant process. Hepatocytes have a close relationship with immune cells, since in the liver, in addition to hepatocytes, there are Kupffer cells, myeloid cells (dendritic cells, monocytes and neutrophils) and other types of immune cells (T and B lymphocytes, NK and NKT, etc.). Cytokines released by various immune cells in the liver may influence liver processes, e.g., inflammation and carcinogenesis. Chronic inflammation results from persistent stimulation, or deficiencies of anti-inflammatory mechanisms. Its key features include immune cell infiltration, presence of inflammatory mediators, and imbalance of pro- and antiinflammatory cytokines leading to aggressive angiogenesis and tissue remodeling which, in turn, promotes the malignant process. Currently, there are several approaches to the HCC treatment which depend on the stage of the disease. Immunotherapy and its combinations have shown positive advances, and further research in this area will provide therapeutic options at the terminal stages of HCC. A variety of cytokines and their functions in HCC development are discussed in the present review article.

About the Authors

T. Aghayev
N. Pirogov Russian National Research Medical University
Russian Federation

Aghayev Turan Aga Rovshan Ogly, Postgraduate Student, Department of Immunology

117997, Moscow, Ostrovitianov str., 1
Phone: 7 (977) 488-93-94



E. K. Titerina
N. Pirogov Russian National Research Medical University
Russian Federation

Research Associate, Laboratory of Molecular Pharmacology, Institute for Translational Medicine

Moscow



M. V. Khoreva
N. Pirogov Russian National Research Medical University
Russian Federation

PhD, MD (Medicine), Associate Professor, Professor, Department of Immunology

Moscow



L. V. Gankovskaya
N. Pirogov Russian National Research Medical University
Russian Federation

PhD, MD (Medicine), Professor, Department of Immunology

Moscow



References

1. Ageeva L.I., Aleksandrova G.A., Zaychenko N.M., Kirillova G.N., Leonov S.A., Ogrizko E.V., Titova I.A., Kharkova T.L., Chumarina V.Zh., Pak Den Nam. Health care in Russia. 2019. Statistical collection / Rosstat. Moscow, 2019. 170 p.

2. Karin A.D., Starinskiy V.V., Petrova G.V. Malignant neoplasms in Russia in 2018 (morbidity and mortality). Moscow: P. Herzen Moscow Cancer Research Institute, Branch of National Medical Research Radiological Centre, 2019. 250 p.

3. Aleksandrova K., Boeing H., Nöthlings U., Jenab M., Fedirko V., Kaaks R., Lukanova A., Trichopoulou A., Trichopoulos D., Boffetta P., Trepo E., Westhpal S., Duarte-Salles T., Stepien M., Overvad K., Tjønneland A., Halkjaer J., Boutron-Ruault M.-C., Dossus L., Racine A., Lagiou P., Bamia C., Benetou V., Agnoli C., Palli D., Panico S., Tumino R., Vineis P., Bueno-de-Mesquita B., Peeters P.H., Gram I.T., Lund E., Weiderpass E., Quirós J.R., Agudo A., Sánchez M.-J., Gavrila D., Barricarte A., Dorronsoro M., Ohlsson B., Lindkvist B., Johansson A., Sund M., Khaw K.-T., Wareham N., Travis R.C., Riboli E., Pischon T. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology, 2014, Vol. 60, no. 3, pp. 858-871.

4. Andrews K.J., Ribas A., Butterfield L.H., Vollmer C.M., Eilber F.C., Dissette V.B., Nelson S.D., Shintaku P., Mekhoubad S., Nakayama T., Taniguchi M., Glaspy J.A., McBride W.H., Economou J.S. Adenovirus-interleukin-12-mediated tumor regression in a murine hepatocellular carcinoma model is not dependent on CD1-restricted natural killer T cells. Cancer Res., 2000, Vol. 60, no. 22, pp. 6457-6464.

5. Anstee Q.M., Reeves H.L., Kotsiliti E., Govaere O., Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol., 2019, Vol. 16, no. 7, pp. 411-428.

6. Attallah A.M., El-Far M., Zahran F., Shiha G.E., Farid K., Omran M.M., Abdelrazek M.A., Attallah A.A., el-Beh A.A., El-Hosiny R.M., El-Waseef A.M. Interferon-gamma is associated with hepatic dysfunction in fibrosis, cirrhosis, and hepatocellular carcinoma. J. Immunoassay Immunochem., 2016, Vol. 37, no. 6, pp. 597-610.

7. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev., 2002, Vol. 13, no. 2, pp. 135-141.

8. Balkwill F. Tumour necrosis factor and cancer. Nat. Rev. Cancer., 2009, Vol. 9, no. 5, pp. 361-371.

9. Beckebaum S., Zhang X., Chen X., Yu Z., Frilling A., Dworacki G., Grosse-Wilde H., Broelsch C.E., Gerken G., Cicinnati V.R. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin. Cancer Res., 2004, Vol. 10, no. 21, pp. 7260-7269.

10. Bergmann J., Müller M., Baumann N., Reichert M., Heneweer C., Bolik J., Lücke K., Gruber S., Carambia A., Boretius S., Leuschner I., Becker T., Rabe B., Herkel J., Wunderlich F.T., Mittrücker H.-W., Rose-John S., Schmidt-Arras D. IL-6 trans-signaling is essential for the development of hepatocellular carcinoma in mice. Hepatology, 2017, Vol. 65, no. 1, pp. 89-103.

11. Billiau A. Interferon-gamma: biology and role in pathogenesis. Adv. Immunol., 1996, Vol. 62, pp. 61-130.

12. Blouin C.M., Hamon Y., Gonnord P., Boularan C., Kagan J., de Lesegno C.V., Ruez R., Mailfert S., Bertaux N., Loew D., Wunder C., Johannes L., Vogt G., Contreras F.-X., Marguet D., Casanova J.-L., Galès C., He H.-T., Lamaze C. Glycosylation-dependent IFN-γR partitioning in lipid and actin nanodomains is critical for JAK activation. Cell, 2016, Vol. 166, no. 4, pp. 920-934.

13. Boraschi D., Tagliabue A. The interleukin-1 receptor family. Semin. Immunol., 2013, Vol. 25, no. 6, pp. 394-407.

14. Bortolami M., Venturi C., Giacomelli L., Scalerta R., Bacchetti S., Marino F., Floreani A., Lise M., Naccarato R., Farinati F. Cytokine, infiltrating macrophage and T cell-mediated response to development of primary and secondary human liver cancer. Dig. Liver Dis., 2002, Vol. 34, no. 11, pp. 794-801.

15. Cabillic F., Corlu A. Regulation of transdifferentiation and retrodifferentiation by inflammatory cytokines in hepatocellular carcinoma. Gastroenterology, 2016, Vol. 151, no. 4, pp. 607-615.

16. Chan S.L., Wong V.W., Qin S., Chan H.L. Infection and cancer: the case of hepatitis B. J. Clin. Oncol., 2016, Vol. 34, no. 1, pp. 83-90.

17. Chau G.Y., Wu C.W., Lui W.Y., Chang T.J., Kao H.L., Wu L.H., King K.L., Loong C.C., Hsia C.Y., Chi C.W. Serum interleukin-10 but not interleukin-6 is related to clinical outcome in patients with resectable hepatocellular carcinoma. Ann. Surg., 2000, Vol. 231, no. 4, pp. 552-558.

18. Dasgupta P., Henshaw C., Youlden D.R., Clark P.J., Aitken J.F., Baade P.D. Global trends in incidence rates of primary adult liver cancers: a systematic review and meta-analysis. Front. Oncol., 2020, Vol. 10, 171. doi: 10.3389/fonc.2020.00171.

19. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018, Vol. 67, no. 1, pp. 123-133.

20. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol., 2018, Vol. 69, no. 1, pp. 182-236.

21. Ferrín G., Guerrero M., Amado V., Rodríguez-Perálvarez M., de la Mata M. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int. J. Mol. Sci., 2020, Vol. 21, no. 4, 1266. doi: 10.3390/ijms21041266.

22. Fu Y., Liu S., Zeng S., Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, Vol. 38, no. 1, 396. doi: 10.1186/s13046-019-1396-4.

23. Fung A.S., Tam V.C., Meyers D.E., Sim H.-W., Knox J.J., Zaborska V., Davies J., Ko Y.-J., Batuyong E., Samawi H., Cheung W.Y., Lee-Ying R. Second-line treatment of hepatocellular carcinoma after sorafenib: Characterizing treatments used over the past 10 years and real-world eligibility for cabozantinib, regorafenib, and ramucirumab. Cancer Med., 2020, Vol. 9, no. 13, pp. 4640-4647.

24. Hatting M., Spannbauer M., Peng J., Masaoudi M.A., Sellge G., Nevzorova Y.A., Gassler N., Liedtke C., Cubero F.J., Trautwein C. Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model. Cell Death Dis., 2015, Vol. 6, no. 3, e1667. doi: 10.1038/cddis.2014.590.

25. He G., Dhar D., Nakagawa H., Font-Burgada J., Ogata H., Jiang Y., Shalapour S., Seki E., Yost S.E., Jepsen K., Frazer K.A., Harismendy O., Hatziapostolou M., Iliopoulos D., Suetsugu A., Hoffman R.M., Tateishi R., Koike K., Karin M. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell, 2013, Vol. 155, no. 2, pp. 384-396.

26. He G., Yu G.Y., Temkin V., Ogata H., Kuntzen C., Sakurai T., Sieghart W., Peck-Radosavljevic M., Leffert H.L., Karin M. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell, 2010, Vol. 17, no. 3, pp. 286-297.

27. Hotamisligil G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell, 2010, Vol. 140, no. 6, pp. 900-917.

28. Jemal A., Ward E.M., Johnson C.J., Cronin K.A., Ma J., Ryerson B., Mariotto A., Lake A.J., Wilson R., Sherman R.L., Anderson R.N., Henley S.J., Kohler B.A., Penberthy L., Feuer E.J., Weir H.K. Annual report to the nation on the status of cancer, 1975-2014, Featuring Survival. J. Natl Cancer Inst., 2017, Vol. 109, no. 9. djx030. doi: 10.1093/jnci/djx030.

29. Kelley R.K., Gane E., Assenat E., Siebler J., Galle P.R., Merle P., Hourmand I.O., Cleverly A., Zhao Y., Gueorguieva I., Lahn M., Faivre S., Benhadji K.A., Giannelli G. A phase 2 study of galunisertib (TGF-β1 Receptor Type I Inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin. Transl. Gastroenterol., 2019, Vol. 10, no. 7. e00056. doi: 10.14309/ctg.0000000000000056.

30. Kishimoto T. IL-6: from its discovery to clinical applications. Int. Immunol., 2010, Vol. 22, no. 5, pp. 347-352.

31. Kohla M.A.S., Attia A., Darwesh N., Obada M., Taha H., Youssef M.F. Association of serum levels of transforming growth factor β1 with disease severity in patients with hepatocellular carcinoma. Hepatoma Res., 2017, Vol. 3, pp. 294-301.

32. Komita H., Homma S., Saotome H., Zeniya M., Ohno T., Toda G. Interferon-gamma produced by interleukin-12-activated tumor infiltrating CD8+ T cells directly induces apoptosis of mouse hepatocellular carcinoma. J. Hepatol., 2006, Vol. 45, no. 5, pp. 662-672.

33. Krelin Y., Voronov E., Dotan S., Elkabets M., Reich E., Fogel M., Huszar M., Iwakura Y., Segal S., Dinarello C.A., Apte R.N. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res., 2007, Vol. 67, no. 3, pp. 1062-1071.

34. Kumari N., Dwarakanath B.S., Das A., Bhatt A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, Vol. 37, no. 9, pp. 11553-11572.

35. Lanton T., Shriki A., Nechemia-Arbely Y., Abramovitch R., Levkovitch O., Adar R., Rosenberg N., Paldor M., Goldenberg D., Sonnenblick A., Peled A., Rose-John S., Galun E., Axelrod J.H. Interleukin 6-dependent genomic instability heralds accelerated carcinogenesis following liver regeneration on a background of chronic hepatitis. Hepatology, 2017, Vol. 65, no. 5, pp. 1600-1611.

36. Lasek W., Zagożdżon R., Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother., 2014, Vol. 63, no. 5, pp. 419-435.

37. Lee I.C., Huang Y.H., Chau G.Y., Huo T.I., Su C.W., Wu J.C., Lin H.C.. Serum interferon gamma level predicts recurrence in hepatocellular carcinoma patients after curative treatments. Int. J. Cancer., 2013, Vol. 133, no. 12, pp. 2895-2902.

38. Lee J.H., Lee J.H., Lim Y.S., Yeon J.E., Song T.-J., Yu S.J., Gwak G.-Y., Kim K.M., Kim Y.J., Lee J.W., Yoon J.-H. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology, 2015, Vol. 148, no. 7, pp. 1383-1391.

39. Li J., Zeng M., Yan K., Yang Y., Li H., Xu X.. IL-17 promotes hepatocellular carcinoma through inhibiting apoptosis induced by IFN-γ. Biochem. Biophys. Res. Commun., 2020, Vol. 522, no. 2, pp. 525-531.

40. Lin W.W., Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest., 2007, Vol. 117, no. 5, pp. 1175-1183.

41. Liu Z., Liu X., Liang J., Liu Y., Hou X., Zhang M., Li Y., Jiang X. Immunotherapy for hepatocellular carcinoma: current status and future prospects. Front. Immunol., 2021, Vol. 12, 765101. doi: 10.3389/fimmu.2021.765101.

42. Llovet J.M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.-F., de Oliveira A.C., Santoro A., Raoul J.-L., Forner A., Schwartz M., Porta C., Zeuzem S., Bolondi L., Greten T.F., Galle P.R., Seitz J.-F., Borbath I., Häussinger D., Giannaris T., Shan M., Moscovici M., Voliotis D., Bruix J., SHARP Investigators Study Group Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, Vol. 359, no. 4, pp. 378-390.

43. Lo C.H., Chang C.M., Tang S.W., Pan W.-Y., Fang C.-C., Chen Y., Wu P.-Y., Chen K.-Y., Ma H.-I., Xiao X., Tao M.-H. Differential antitumor effect of interleukin-12 family cytokines on orthotopic hepatocellular carcinoma. J. Gene Med., 2010, Vol. 12, no. 5, pp. 423-434.

44. Ma Y., Xu Y.C., Tang L., Zhang Z., Wang J., Wang H.X. Cytokine-induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp. Hematol. Oncol., 2012, Vol. 1, no. 1, 11. doi: 10.1186/2162-3619-1-11.

45. Macarthur M., Hold G.L., El-Omar E.M. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, Vol. 286, no. 4, G515-20. doi: 10.1152/ajpgi.00475.2003.

46. Machado M.V., Diehl A.M. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology, 2016, Vol. 150, no. 8, pp. 1769-1777.

47. Marrero J.A., Kulik L.M., Sirlin C.B., Zhu A.X., Finn R.S., Abecassis M.M., Roberts L.R., Heimbach J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the american association for the study of liver diseases. Hepatology, 2018, Vol. 68, no. 2, pp. 723-750.

48. Massagué J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett., 2006, Vol. 580, no. 12, pp. 2811-2820.

49. Mazzaferro V., Regalia E., Doci R., Andreola S., Pulvirenti A., Bozzetti F., Montalto F., Ammatuna M., Morabito A., Gennari L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med., 1996, Vol. 334, no. 11, pp. 693-699.

50. Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008, Vol. 454, no. 7203, pp. 428-435.

51. Migita K., Miyazoe S., Maeda Y., Daikoku M., Abiru S., Ueki T., Yano K., Nagaoka S., Matsumoto T., Nakao K., Hamasaki K., Yatsuhashi H., Ishibashi H., Eguchi K. Cytokine gene polymorphisms in Japanese patients with hepatitis B virus infection-association between TGF-beta1 polymorphisms and hepatocellular carcinoma. J. Hepatol., 2005, Vol. 42, no. 4, pp. 505-510.

52. Nakazaki H. Preoperative and postoperative cytokines in patients with cancer. Cancer, 1992, Vol. 70, no. 3, pp. 709-713.

53. Nguyen K.G., Vrabel M.R., Mantooth S.M., Hopkins J.J., Wagner E.S., Gabaldon T.A., Zaharoff D.A. Localized Interleukin-12 for cancer immunotherapy. Front. Immunol., 2020, Vol. 11, 575597. doi: 10.3389/fimmu.2020.575597.

54. Nishida N., Yada N., Hagiwara S., Sakurai T., Kitano M., Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2016, Vol. 31, no. 9, pp. 1646-1653.

55. Park E.J., Lee J.H., Yu G.Y., He G., Ali S.R., Holzer R.G., Osterreicher C.H., Takahashi H., Karin M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 2010, Vol. 140, no. 2, pp. 197-208.

56. Peron J.M., Couderc B., Rochaix P., Douin-Echinard V., Asnacios A., Souque A., Voigt J.-J., Buscail L., Vinel J.-P., Favre G. Treatment of murine hepatocellular carcinoma using genetically modified cells to express interleukin-12. J. Gastroenterol. Hepatol., 2004, Vol. 19, no. 4, pp. 388-396.

57. Pützer B.M., Stiewe T., Rödicker F., Schildgen O., Rühm S., Dirsch O., Fiedler M., Damen U., Tennant B., Scherer C., Graham F.L., Roggendorf M. Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes. J. Natl Cancer Inst., 2001, Vol. 93, no. 6, pp. 472-479.

58. Raoul J.L., Forner A., Bolondi L., Cheung T.T., Kloeckner R., de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev., 2019, Vol. 72, pp. 28-36.

59. Rébé C., Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel), 2020, Vol. 12, no. 7, 1791. doi: 10.3390/cancers12071791.

60. Reichner J.S., Mulligan J.A., Spisni R., Sotomayor E.A., Albina J.E., Bland K.I. Effect of IL-6 overexpression on the metastatic potential of rat hepatocellular carcinoma cells. Ann. Surg. Oncol., 1998, Vol. 5, no. 3, pp. 279-286.

61. Riley J.K., Takeda K., Akira S., Schreiber R.D. Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J. Biol. Chem., 1999, Vol. 274, no. 23, pp. 16513-16521.

62. Sabat R., Grütz G., Warszawska K., Kirsch S., Witte E., Wolk K., Geginat J. Biology of interleukin-10. Cytokine Growth Factor Rev., 2010, Vol. 21, no. 5, pp. 31-44.

63. Santer F.R., Malinowska K., Culig Z., Cavarretta I.T. Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endoc. Relat. Cancer, 2010, Vol. 17, no. 1, pp. 241-253.

64. Sato T., Terai M., Tamura Y., Alexeev V., Mastrangelo M.J., Selvan S.R. Interleukin 10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol. Res., 2011, Vol. 51, no. 2-3, pp. 170-182.

65. Schoenfeld H.J., Poeschl B., Frey J.R., Loetscher H., Hunziker W., Lustig A., Zulauf M. Efficient purification of recombinant human tumor necrosis factor beta from Escherichia coli yields biologically active protein with a trimeric structure that binds to both tumor necrosis factor receptors. J. Biol. Chem., 1991, Vol. 266, no. 6, pp. 3863-3869.

66. Schulze K., Imbeaud S., Letouzé E., Alexandrov L.B., Calderaro J., Rebouissou S., Couchy G., Meiller C., Shinde J., Soysouvanh F., Calatayud A.-L., Pinyol R., Pelletier L., Balabaud C., Laurent A., Blanc J.-F., Mazzaferro V., Calvo F., Villanueva A., Nault J.-C., Bioulac-Sage P., Stratton M.R., Llovet J.M., Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet., 2015, Vol. 47, no. 5, pp. 505-511.

67. Seehawer M., Heinzmann F., D’Artista L., Harbig J., Roux P.-F., Hoenicke L., Dang H., Klotz S., Robinson L., Doré G., Rozenblum N., Kang T.-W., Chawla R., Buch T., Vucur M., Roth M., Zuber J., Luedde T., Sipos B., Longerich T., Heikenwälder M., Wang X.W., Bischof O., Zender L. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature, 2018, Vol. 564, pp. 69-75.

68. Shakiba E., Ramezani M., Sadeghi M. Evaluation of serum interleukin-10 levels in hepatocellular carcinoma patients: a systematic review and meta-analysis. Clin. Exp. Hepatol., 2018, Vol. 4, no. 1, pp. 35-40.

69. Shanahan J.C., St Clair W. Tumor necrosis factor-alpha blockade: a novel therapy for rheumatic disease. Clin. Immunol., 2002, Vol. 103, pp. 231-242.

70. Shen Y., Wei Y., Wang Z., Jing Y., He H., Yuan J., Li R., Zhao Q., Wei L., Yang T., Lu J. TGF-β regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell. Physiol. Biochem., 2015, Vol. 35, no. 4, pp. 1623-1632.

71. Sia D., Villanueva A., Friedman S.L., Llovet J.M. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 2017, Vol. 152, no. 4, pp. 745-761.

72. Song le H., Binh V.Q., Duy D.N., Kun J.F., Bock T.C., Kremsner P.G., Luty A.J. Serum cytokine profiles associated with clinical presentation in Vietnamese infected with hepatitis B virus. J. Clin. Virol., 2003, Vol. 28, no. 1, pp. 93-103.

73. Szabo G., Petrasek J. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol., 2015, Vol. 12, no. 7, pp. 387-400.

74. Tak K.H., Yu G.I., Lee M.Y., Shin D.H. Association between polymorphisms of interleukin 1 family genes and hepatocellular carcinoma. Med. Sci. Monit., 2018, Vol. 24, pp. 3488-3495.

75. Tu S., Bhagat G., Cui G., Takaishi S., Kurt-Jones E.A., Rickman B., Betz K.S., Penz-Oesterreicher M., Bjorkdahl O., Fox J.G., Wang T.C. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell, 2008, Vol. 14, no. 5, pp. 408-419.

76. Tzartzeva K., Obi J., Rich N.E., Parikh N.D., Marrero J.A., Yopp A., Waljee A.K., Singal A.G. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology, 2018, Vol. 154, no. 6, pp. 1706-1718.

77. Vignali D.A., Kuchroo V.K. IL-12 family cytokines: immunological playmakers. Nat. Immunol., 2012, Vol. 13, no. 8, pp. 722-728.

78. Wang Q., Cheng F., Ma T.T., Xiong H.-Y., Li Z.-W., Xie C.-L., Liu C.-Y., Tu Z.-G. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3. Mol. Cell Biochem., 2016, Vol. 415, no. 1-2, pp.157-168.

79. Wang Z., Qiu S.J., Ye S.L., Tang Z.Y., Xiao X. Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma. Cancer Gene Ther., 2001, Vol. 8, no. 10, pp. 751-758.

80. Watkins S.K., Egilmez N.K., Suttles J., Stout R.D. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J. Immunol., 2007, Vol. 178, no. 3, pp. 1357-1362.

81. Wheelhouse N.M., Chan Y.S., Gillies S.E., Caldwell H., Ross J.A., Harrison D.J., Prost S. TNF-alpha induced DNA damage in primary murine hepatocytes. Int. J. Mol. Med., 2003, Vol. 12, no. 6, pp. 889-894.

82. Wolin K.Y., Carson K., Colditz G.A. Obesity and cancer. Oncologist, 2010, Vol. 15, no. 6, pp. 556-565.

83. World Health organization, The Global Cancer Observatory, 2020. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf.

84. Xu L., Wang J., Kim Y., Shuang Z.-Y., Zhang Y.-J., Lao X.-M., Li Y.-Q., Chen M.-S., Pawlik T.M., Xia J.-C., Li S.-P., Lau W.-Y. A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. Oncoimmunology, 2015, Vol. 5, no. 3, e1083671. doi: 10.1080/2162402X.2015.1083671.

85. Yamashita T., Kudo M., Ikeda K., Izumi N., Tateishi R., Ikeda M., Aikata H., Kawaguchi Y., Wada Y., Numata K., Inaba Y., Kuromatsu R., Kobayashi M., Okusaka T., Tamai T., Kitamura C., Saito K., Haruna K., Okita K., Kumada H. REFLECT-a phase 3 trial comparing efficacy and safety of lenvatinib to sorafenib for the treatment of unresectable hepatocellular carcinoma: an analysis of Japanese subset. J. Gastroenterol., 2020, Vol. 55, no. 1, pp. 113-122.

86. Yang L., Huang J., Ren X., Gorska A.E., Chytil A., Aakre M., Carbone D.P., Matrisian L.M., Richmond A., Lin P.C., Moses H.L. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 2008, Vol. 13, no. 1, pp. 23-35.

87. Yu L.X., Ling Y., Wang H.Y. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis. Oncol, 2018, Vol. 2, no. 1, 6. doi: 10.1038/s41698-018-0048-z.

88. Zekri A.-R.N., El Deeb S., Bahnassy A.A., Badr A.M., Abdellateif M.S., Esmat G., Salama H., Mohanad M., el-Dien A.E., Rabah S., Elkader A.A. Role of relevant immune-modulators and cytokines in hepatocellular carcinoma and premalignant hepatic lesions. World J. Gastroenterol., 2018, Vol. 24, no. 11, pp. 1228-1238.

89. Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci., 2018, Vol. 14, no. 2, pp. 111-123.

90. Zhou X.D., Tang Z.Y., Yang B.H., Lin Z.Y., Ma Z.C., Ye S.L., Wu Z.Q., Fan J., Qin L.X., Zheng B.H. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer, 2001, Vol. 91, no. 8, pp. 1479-1486.


Supplementary files

Review

For citations:


Aghayev T., Titerina E.K., Khoreva M.V., Gankovskaya L.V. Role of cytokines in hepatocellular carcinoma. Medical Immunology (Russia). 2022;24(5):889-902. (In Russ.) https://doi.org/10.15789/1563-0625-ROC-2512

Views: 426


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)