Preview

Медицинская иммунология

Расширенный поиск

Влияние мутационных вариантов спайкового гликопротеина и РНК-зависимой РНКполимеразы (nsp12) SARS-CoV-2 на участки стыковки с ремдесивиром

https://doi.org/10.15789/1563-0625-IOS-2486

Аннотация

В связи с быстрым развитием и эволюцией новых вариантов SARS-CoV-2 возникли проблемы, касающиеся их потенциального влияния на эффективность существующих вакцин. При этом наиболее значимые мутации касаются гена спайкового гликопротеина вируса. Ремдесивир, ингибирующий активность РНК-зависимой РНК-полимеразы (РдРп), является единственным препаратом, принятым FDA для лечения COVID-19 (nsp12). Исследовалось связывание (стыковка) гибкого лиганда (ремдесивира) с жесткими рецепторами (спайковый белок и РдРп). В ряде работ было обнаружено, что мутации спайкового гликопротеина и РдРп оказывают существенное влияние на поведение вируса и, в конечном счете, – на состояние здоровья человека. Показано, что позиция стыковки ремдесивира со спайковым белком и РдРп не определяется мутациями в недостающих петлях. Ремдесивир может связываться только с В- и С-цепями спайкового белка. Некоторые мутации могут передаваться в отдельных вариантах без изменения типа аминокислот, как, например, K417N, L452R, N501Y, D614G, T716I и S982A.

Об авторе

Али А. Давуд
Медицинский колледж, Мосульский университет
Ирак

Автор: Али А. Давуд – кандидат микробиологических наук, лектор, кафедра анатомии.

1, г. Мосул. Тел.: 00964 (770)-176-8002


Конфликт интересов:

нет



Список литературы

1. Baum A., Fulton B.O., Wloga E., Copin R., Pascal K.E., Russo V., Giordano S., Lanza K., Negron N., Ni M., Wei Y., Atwal G.S., Murphy A.J., Stahl N., Yancopoulos G.D., Kyratsous C.A. Antibody cocktail to SARSCoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, 2020, Vol. 369, pp. 1014-1018.

2. Choy K.-T., Wong A.Y.-L., Kaewpreedee P., Sia S.F., Chen D., Hui K.P.Y., Chu D.K.W., Chan M.C.W., Cheung P.P.-H., Huang X., Peiris M., Yen H.-L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARSCoV-2 replication in vitro. Antiviral Res., 2020, Vol. 178, 104786. doi: 10.1016/j.antiviral.2020.104786.

3. Dawood A., Altobje M., Alnori H. Compatibility of the ligand binding sites in the spike glycoprotein of covid-19 with those in the aminopeptidase and the caveolins 1, 2 proteins. Res. J. Pharm. Tech., 2021, Vol. 14, no. 9, pp. 4760-4766.

4. Dawood A., Altobje M., Alrassam Z. Molecular docking of SARS-CoV-2 nucleocapsid protein with angiotensin-converting enzyme II. Mikrobiol. Zhu, 2021, Vol. 83, no. 2, pp. 82-92.

5. Dawood A., Altobje M. Inhibition of N-linked glycosylation by nunicamycin may contribute to the treatment of SARS-CoV-2. Microbiol. Path., 2020, Vol. 149, 104586. doi: 10.1016/j.micpath.2020.104586.

6. Dawood A. Glycosylation, ligand binding sites and antigenic variations between membrane glycoprotein of COVID-19 and related coronaviruses. Vacunas. 2021, Vol. 22, no. 1, pp. 1-9.

7. Dawood A. Identification of CTL and B-cell epitopes in the Nucleocapsid Phosphoprotein of COVID-19 using Immunoinformatics. Microbiol. J., 2021, Vol. 83, no. 1, pp. 78-86.

8. Dawood A. New variant of SARS-CoV-2 in South Africa. Prog. Med. Sc., 2021, Vol. 5, no. 1, pp. 1-2.

9. Dawood A. Using remdesivir and dexamethasone for treatment of SARS-CoV-2 shortens the patient’s stay in the hospital. Asi an J. Pharm. Res., 2021, Vol. 11, Iss. 2, 138-0. doi: 10.52711/2231-5691.2021.00026.

10. Deshpande R., Tiwari P., Nyayanit N., Modak M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur. J. Pharmacol., 2020, Vol. 886, 173430. doi.org/10.1016/j.ejphar.2020.173430.

11. Eskier D., Karakülah G., Suner A., Oktay Y. RdRp mutations are associated with SARS-CoV-2 genome evolution. Peer J., 2020, Vol. 8, e9587. doi:/10.7717/peerj.9587.

12. Eweas A., Alhossary A., Abdul-Moneim A. Molecular Docking Reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front. Microbiol., 2021, Vol. 11, e592908. doi: 10.3389/fmicb.2020.592908.

13. Garvin M.R., Prates E.T., Pavicic M., Jones P., Amos B.K., Geiger A., Shah M.B., Streich J., Gazolla J.G.F.M., Kainer D., Cliff A., Romero J., Keith N., Brown J.B., Jacobson D. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol., 2020, Vol. 21, 304. doi: 10.1186/s13059-020-02191-0.

14. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med., 2020, Vol. 382, pp. 2327-2336.

15. Hall Jr., Ji H-F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med. Infect. Dis., 2020, Vol. 35, 101646. doi: 0.1016/j.tmaid.2020.101646.

16. Henderson R., Edwards R.J., Mansouri K., Janowska K., Stalls V., Gobeil S.M.C., Kopp M., Li D., Parks R., Hsu A.L., Borgnia M.J., Haynes B.F., Priyamvada acharya controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol., 2020, Vol. 27, pp. 925-933.

17. Ilmjärv S., Abdul F., Acosta-Gutiérrez S., Estarellas C., Galdadas I., Casimir M., Alessandrini M., Gervasio F.L., Krause K.-H. Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant. Sci. Rep., 2021, Vol. 11, 13705. doi: 10.1038/s41598021-91662-w.

18. Jean S., Lee I., Hsueh R. Treatment options for COVID-19: the reality and challenges. J. Microbiol. Immunol. Infect., 2020, Vol. 53, pp. 436-443.

19. Kumar Y., Singh H., Patel C.N. In silico prediction of potential inhibitors for the main protease of SARSCoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health, 2020, Vol. 13, pp. 1210-1223.

20. Mari A., Roloff T., Stange M., Søgaard K.K., Asllanaj E., Tauriello G., Alexander L.T., Schweitzer M., Leuzinger K., Gensch A., Martinez A.E., Bielicki J., Pargger H., Siegemund M., Nickel C.H., Bingisser R., Osthoff M., Bassetti S., Sendi P., Battegay M., Marzolini C., Seth-Smith H.M.B., Schwede T., Hirsch H.H., Egli A. Global genomic analysis of SARS-CoV-2 RNA dependent RNA polymerase evolution and antiviral drug resistance. Microorganisms, 2021, Vol. 9, no. 5, 1094. doi: 10.3390/microorganisms9051094.

21. Nguyen H., Thai N., Truong D., Li M. Remdesivir Strongly Binds to Both RNA-Dependent RNA polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. J. Phys. Chem., 2020, Vol. 124, pp. 11337-11348.

22. Pachetti M., Marini B., Benedetti F., Giudici F., Mauro E., Storici P., Masciovecchio C., Angeletti S., Ciccozzi M., Gallo R.C., Zella D., Ippodrino R. Emerging SARS-CoV-2 mutation hot spots include a novel RNAdependent-RNA polymerase variant. J. Transl. Med., 2020, Vol. 18, no. 1, 179. doi.org/10.1186/s12967-020-02344-6.

23. Sada M., Saraya T., Ishii H., Okayama K., Hayashi Y., Tsugawa T., Nishina A., Murakami K., Kuroda M., Ryo A., Kimura H. Detailed molecular interactions of favipiravir with SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus polymerases in silico. Microorganisms, 2020, Vol. 8, no. 10, 1610. doi: 10.3390/microorganisms8101610.

24. Salleh M.Z., Derrick J.P., Deris Z.Z. Structural evaluation of the spike glycoprotein variants on SARS-CoV-2 transmission and immune evasion. Inter. J. Mol. Sci., 2021, Vol. 22, no. 14, 7425. doi.org/10.3390/ijms22147425.

25. Senger M.R., Evangelista T.C.S., Dantas R.F., Santana M.V.D.S., Gonçalves L.C.S., de Souza Neto L.R., Ferreira S.B., Silva-Junior F.P. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem. Inst. Oswaldo Cruz, 2020, Vol. 115, e200254. doi: 10.1590/0074-02760200254.

26. Shaeen A., Sattar N., Ibrahim M., Irfan M. Role of Remdesivir in COVID-19. Aus. J. Pulm. Res. Med., 2021, Vol. 8, no. 1, 1071.

27. Sheahan T.P., Sims A.C., Leist S.R., Schafer A., Won J. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, Vol. 11, no. 1, 222. doi: 10.1038/s41467-019-13940-6.

28. Shehroz M., Zaheer T., Hussain T. Computer-aided drug design against spike glycoprotein of SARS-CoV-2 to aid COVID-19 treatment. Heliyon, 2020, Vol. 6, no. 10, e05278. doi.org/10.1016/j.heliyon.2020.e05278.

29. Showers W., Leach S., Kechris K., Strong M. Analysis of SARS-CoV-2 Mutations over time reveals increasing prevalence of variants in the spike protein and RNA-dependent RNA polymerase. bioRxiv, 2021. doi: 10.1101/2021.03.05.433666.

30. Sun C., Zhang J., Wei J., Zheng X., Zhao X., Fang Z., Xu D., Yuan H., Liu Y. Screening, simulation, and optimization design of small molecule inhibitors of the SARS-CoV-2 spike glycoprotein. PLoS One, 2021, Vol. 16, no. 1, e0245975. doi: 10.1371/journal.pone.0245975.

31. Walls C., Park Y.-J., Tortorici A., Wall A., Mcguire T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, Vol. 181, pp. 281.e6-292.e6.

32. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, Vol. 30, pp. 269-271.

33. Williamson B.N., Feldmann F., Schwarz B., Meade-White K., Porter D.P., Schulz J., van Doremalen N., Leighton I., Yinda C.K., Pérez-Pérez L., Okumura A., Lovaglio J., Hanley P.W., Saturday G., Bosio C.M., Anzick S., Barbian K., Cihlar T., Martens C., Scott D.P., Munster V.J., de Wit E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-19. Nature, 2020, Vol. 585, pp. 273-276.

34. Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G., Jiang T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, Vol. 27, pp. 325-328.

35. Wu C., Chen X., Cai Y., Xia J., Zhou X. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, Vol. 180, no. 7, pp. 1-11.

36. Yin W., Mao C., Luan X., Shen D.-D., Shen Q., Su H., Wang X., Zhou F., Zhao W., Gao M., Chang S., Xie Y.C., Tian G., Jiang H.-W., Tao S.-C., Shen J., Jiang Y., Jiang H., Xu Y., Zhang S., Zhang Y., Xu H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, Vol. 368, pp. 1499-1504.

37. Yurkovetskiy L. Wang X., Pascal K.E., Tomkins-Tinch C., Nyalile T.P., Wang Y., Baum A., Diehl W.E., Dauphin A., Carbone C., Veinotte K., Egri S.B., Schaffner S.F., Lemieux J.E., Munro J.B., Rafique A., Barve A., Sabeti P.C., Kyratsous C.A., Dudkina N.V., Shen K., Luban J. Structural and functional analysis of the D614G SARSCoV-2 spike protein variant. Cell, 2020, Vol. 183, pp. 739-751.e8.

38. Zhang Q., Xiang R., Huo S., Zhou Y., Jiang S., Wang Q., Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Sig. Transduct. Target. Ther., 2021, Vol. 6, no. 1, 233. doi: 10.1038/s41392-021-00653-w.

39. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, Vol. 382, pp. 727-733.


Рецензия

Для цитирования:


Давуд А.А. Влияние мутационных вариантов спайкового гликопротеина и РНК-зависимой РНКполимеразы (nsp12) SARS-CoV-2 на участки стыковки с ремдесивиром. Медицинская иммунология. 2022;24(3):617-628. https://doi.org/10.15789/1563-0625-IOS-2486

For citation:


Dawood A.A. Influence of SARS-CoV-2 variants’ spike glycoprotein and RNA-dependent RNA polymerase (nsp12) mutations on remdesivir docking residues. Medical Immunology (Russia). 2022;24(3):617-628. https://doi.org/10.15789/1563-0625-IOS-2486

Просмотров: 231


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)