Preview

Медицинская иммунология

Расширенный поиск

Cтресс-индуцированные молекулы MICA и MICB в онкологии

https://doi.org/10.15789/1563-0625-SIM-2480

Полный текст:

Аннотация

Молекулы MICA и MICB, родственные молекулам главного комплекса гистосовместимости I класса, появляются на мембранах поврежденных, трансформированных или инфицированных клеток. Эти гликопротеины связываются с NKG2D рецептором NK-клеток, что приводит к их активации и проявлению цитотоксической реакции в отношении экспрессирующих MICA и/или MICB клеток. Экспрессия лигандов NKG2D рецептора позволяет элиминировать опухолевые и поврежденные клетки. Под действием протеиназ образуются растворимые формы MICA/B белков. Связывание растворимых форм лигандов с NKG2D рецепторами вызывает их интернализацию и деградацию, что приводит к снижению активности NK-клеток. Рост ряда опухолей желудочного-кишечного тракта, поджелудочной железы, печени, почек, легких, кожи и кровеносной системы сопровождается повышением концентрации растворимых форм MICA/B в плазме крови пациентов. Высокая концентрация этих белков ассоциирована с более низкой общей и безрецедивной выживаемостью пациентов. Растворимые формы MICA/B способствуют формированию иммуносупрессивного микроокружения опухоли, а повышение их концентрации в плазме крови можно рассматривать как индикатор избегания опухолью иммунного надзора. Роль белков MICA/B изменяется в процессе канцерогенеза. На ранней стадии формирования опухоли эти белки способствуют активации NK-клеток и уничтожению трансформированных клеток, а на поздней стадии процесса повышенная продукция их растворимых форм приводит к снижению противоопухолевой активности NK-клеток. Стандартные методы лечения онкологических заболеваний, такие как химиотерапия, вызывают повышение плотности молекул MICA/B на клетках опухолей. Кроме того, доклинические исследования показывают, что подавление шеддинга MICA/B с помощью антител или их производных также способствует усилению противоопухолевой активности NK-клеток. В настоящем обзоре суммированы основные сведения о биологии молекул MICA/B, их экспрессии нормальными и трансформированными клетками, рассмотрена роль этих молекул в противо опухолевом иммунном надзоре, а также приведены сведения о возможности использования MICA/B в диагностике и терапии онкологических заболеваний.

Об авторах

А. Ю. Столбовая
ФГБУ Российский научный центр радиологии и хирургических технологий имени академика А.М. Гранова Министерства здравоохранения РФ; ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта; ФГБУ Национальный медицинский исследовательский центр имени В.А. Алмазова Министерства здравоохранения РФ
Россия

Столбовая Анастасия Юрьевна – научный сотрудник лаборатории гибридомной технологии РНИЦРХ имени академика А.М. Гранова; лаборант-исследователь НИИАГР имени Д.О. Отта; аспирант НМИЦ имени В.А. Алмазова.

197758, п. Песочный, ул. Ленинградская, 70. Тел.: 8 (921) 312-00-25


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



И. В. Смирнов
ФГБУ Российский научный центр радиологии и хирургических технологий имени академика А.М. Гранова Министерства здравоохранения РФ; ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта
Россия

Илья Валерьевич Смирнов – кандидат биологических наук, ведущий научный сотрудник лаборатории гибридомной технологии РНИЦРХ имени академика А.М. Гранова; младший научный сотрудник НИИАГР имени Д.О. Отта.

Санкт-Петербург


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



М. П. Самойлович
ФГБУ Российский научный центр радиологии и хирургических технологий имени академика А.М. Гранова Министерства здравоохранения РФ; ФГБОУ ВО Санкт-Петербургский государственный университет
Россия

Марина Платоновна Самойлович – доктор биологических наук, главный научный сотрудник лаборатории гибридомной технологии РНИЦРХ имени академика А.М. Гранова; профессор кафедры цитологии и гистологии СанктПетербургский ГУ.

Санкт-Петербург


Конфликт интересов:

Авторы декларируют отсутствие конфликта интересов



Список литературы

1. Данилова А.Б., Данилов А.О., Фахрутдинова О.Л., Балдуева И.А., Моисеенко В.М. Иммунохимический анализ продукции MIC A опухолевыми клетками in vitro и in vivo в контексте создания и применения противоопухолевых вакцин // Вопросы онкологии, 2010. Т. 56, № 5. С. 576-582.

2. Клинкова А.В., Кузьмина Е.Г., Абакушина Е.В., Каневский Л.М., Неприна Г.С., Павлов В.В., Коваленко Е.И. Циркулирующий белок MICА у больных злокачественными лимфомами // Медицинская иммунология, 2016. Т. 18, № 2. С.151-162. doi: 10.15789/15630625-2016-2-151-162.

3. Agüera-González S., Boutet P., Reyburn H.T., Valés-Gómez M. Brief residence at the plasma membrane of the MHC class I-related chain B is due to clathrin-mediated cholesterol-dependent endocytosis and shedding. J. Immunol., 2009, Vol. 182, no. 8, pp. 4800-4808.

4. Agüera-González S., Gross C.C., Fernández-Messina L., Ashiru O., Esteso G., Hang H.C., Reyburn H.T., Long E.O., Valés-Gómez M. Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding. Eur. J. Immunol., 2011, Vol. 41, no. 12, pp. 3667-3676.

5. de Andrade F.L., Kumar S., Luoma A.M., Ito Y., Alves da Silva P.H., Pan D., Pyrdol J.W., Yoon C.H., Wucherpfennig K.W. Inhibition of MICA and MICB shedding elicits NK cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immun., 2020, Vol. 8, no. 6, pp. 769-780.

6. Ashiru O., Boutet P., Fernández-Messina L., Agüera-González S., Skepper J.N., Valés-Gómez M., Reyburn H.T. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res., 2010, Vol. 70, no. 2, pp. 481-489.

7. Bahram S. MIC genes: from genetics to biology. Adv. Immunol., 2001, Vol. 76, no. 1995, pp. 1-60.

8. Bahram S., Bresnahan M., E D., Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Immunology, 1994, Vol. 91, no. 7, pp. 6259-6263.

9. Bargostavan M.H., Eslami G., Esfandiari N., Shahemabadi A.S. MMP9 promoter polymorphism (-1562 C/T) does not affect the serum levels of soluble MICB and MICA in breast cancer. Iran. J. Immunol., 2016, Vol. 13, no. 1, pp. 45-53.

10. Basher F., Dhar P., Wang X., Wainwright D.A., Zhang B., Sosman J., Ji Z., Wu J.D. Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. J. Hematol. Oncol., 2020, Vol. 13, no. 1, pp. 1-16.

11. Boutet P., Agüera-González S., Atkinson S., Pennington C.J., Edwards D.R., Murphy G., Reyburn H.T., Valés-Gómez M. Cutting edge: the metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol., 2009, Vol. 182, pp. 49-53.

12. Carapito R., Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol. Rev., 2015, Vol. 267, no. 1, pp. 88-116.

13. Chalupny N.J., Rein-Weston A., Dosch S., Cosman D. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem. Biophys. Res. Commun., 2006, Vol. 346, no. 1, pp. 175-181.

14. Chauveau A., Tonnerre P., Pabois A., Gavlovsky P.J., Chatelais M., Coupel S., Charreau B. Endothelial cell activation and proliferation modulate NKG2D activity by regulating MICA expression and shedding. J. Innate Immun., 2014, Vol. 6, no. 1, pp. 89-104.

15. Chen D., Gyllensten U. Review MICA polymorphism: biology and importance in cancer. Carcinogenesis, 2014, Vol. 35, no. 12, pp. 2633-2642.

16. Chen Y., Lin G., Guo Z.-Q., Zhou Z.-F., He Z.-Y., Ye Y.-B. Effects of MICA expression on the prognosis of advanced non-small cell lung cancer and the efficacy of CIK therapy. PLoS One, 2013, Vol. 8, no. 7, e69044. doi: 10.1371/journal.pone.0069044.

17. Chen Y., Lin W.-S., Zhu W. -F., Lin J., Zhou Z.-F., Huang C.-Z., Chen G., Shi Y., Guo Z.-Q., Ye Y.-B. Tumor MICA status predicts the efficacy of immunotherapy with cytokine-induced killer cells for patients with gastric cancer. Immunol. Res., 2016, Vol. 64, no. 1, pp. 251-259.

18. Chitadze G., Lettau M., Bhat J., Wesch D., Steinle A., Fürst D., Mytilineos J., Kalthoff H., Janssen O., Oberg H.H., Kabelitz D. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer, 2013, Vol. 133, no. 7, pp. 1557-1566.

19. Choy M.K., Phipps M.E. MICA polymorphism: biology and importance in immunity and disease. Trends Mol. Med., 2010, Vol. 16, no. 3, pp. 97-106.

20. Dambrauskas Z., Svensson H., Joshi M., Hyltander A., Naredi P., Iresjö B.M. Expression of major histocompatibility complex class I-related chain A/B (MICA/B) in pancreatic carcinoma. Int. J. Oncol., 2014, Vol. 44, no. 1, pp. 99-104.

21. de Andrade L.F., Tsoucas D., Badrinath S., Ito Y., Yoon C., Yuan G.-C., Kobold S., Luoma A.M., May K.F., Franz B., Dranoff G., Pyrdol J.W., Tay R.E., Harvey C.J., Wucherpfennig K.W. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science, 2018, Vol. 359, no. 6383, pp. 1537-1542.

22. di Modica M., Sfondrini L., Regondi V., Varchetta S., Oliviero B., Mariani G., Bianchi G.V., Generali D., Balsari A., Triulzi T., Tagliabue E. Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2Dmediated NK cell recognition. Oncotarget, 2016, Vol. 7, no. 1, pp. 255-265.

23. Duan X., Deng L., Chen X., Lu Y., Zhang Q., Zhang K., Hu Y., Zeng J., Sun W. Clinical significance of the immunostimulatory MHC class i chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer. Med. Oncol., 2011, Vol. 28, no. 2, pp. 466-474.

24. Dunn G.P., Old L.J., Schreiber R.D. The Immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, Vol. 21, pp. 137-148.

25. Flüh C., Chitadze G., Adamski V., Hattermann K., Synowitz M., Kabelitz D., Held-Feindt J. NKG2D ligands in glioma stem-like cells: expression in situ and in vitro. Histochem. Cell Biol., 2018, Vol. 149, no. 3, pp. 219-223.

26. Frazao A., Rethacker L., Messaoudene M., Avril M.F., Toubert A., Dulphy N., Caignard A. NKG2D/NKG2Ligand pathway offers new opportunities in cancer treatment. Front. Immunol., 2019, Vol. 10, 661. doi: 10.3389/fimmu.2019.00661.

27. Friese M.A., Platten M., Lutz S.Z., Naumann U., Aulwurm S., Bischof F., Bühring H.J., Dichgans J., Rammensee H.G., Steinle A., Weller M. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res., 2003, Vol. 63, no. 24, pp. 8996-9006.

28. Frigoul A., Lefranc M.-P. MICA: Standardized IMGT allele nomenclature, polymorphisms and diseases. Research Signpost India Recent Res. Dev. Human Genet., 2005, Vol. 37661, no. 3, pp. 95-145.

29. Germain C., Larbouret C., Cesson V., Donda A., Held W., Mach J.P., Pèlegrin A., Robert B. MHC class I-related chain a conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin. Cancer Res., 2005, Vol. 11, no. 20, pp. 7516-7522.

30. Ghadially H., Brown L., Lloyd C., Lewis L., Lewis A., Dillon J., Sainson R., Jovanovic J., Tigue N.J., Bannister D., Bamber L., Valge-archer V., Wilkinson R.W. MHC class I chain-related protein A and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br. J. Cancer, 2017, Vol. 116, no. 9, pp. 1208-1217.

31. Gleimer M., Parham P. Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity, 2003, Vol. 19, no. 4, pp. 469-477.

32. Glozak M.A., Seto E. Histone deacetylases and cancer. Oncogene, 2007, Vol. 26, no. 37, pp. 5420-5432.

33. Groh V., Bahramtt S., Bauer S., Herman A., Beauchamp M., Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA, 1996, Vol. 93, no. 10, pp. 12445-12450.

34. Groh V., Rhinehart R., Heather S., Bauer S., Grabstein K.H., Spies T. Broad tumor-associated expression and recognition by tumor-derived T cells of MICA and MICB. Proc. Natl Acad. Sci. USA, 1999, Vol. 96, no. 6, pp. 6879-6884.

35. Groh V., Wu J., Yee C., Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, Vol. 419, no. 6908, pp. 734-738.

36. Hervieu A., Rébé C., Végran F., Chalmin F., Bruchard M., Vabres P., Apetoh L., Ghiringhelli F., Mignot G. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J. Investig. Dermatol., 2013, Vol. 133, no. 2, pp. 499-508.

37. Holmes M.A., Li P., Petersdorf E.W., Strong R.K. Structural Studies of Allelic Diversity of the MHC Class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J. Immunol., 2002, Vol. 169, no. 3, pp. 1395-1400.

38. Houchins J.P., Yabe T., McSherry C., Bach F.H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med., 1991, Vol. 173, no. 4, pp. 1017-1020.

39. Huang B., Sikorski R., Sampath P., Thorne S.H. Modulation of NKG2D-ligand cell surface expression enhances immune cell therapy of cancer. J. Immunother., 2011, Vol. 34, no. 3, pp. 289-296.

40. Huergo-Zapico L., Gonzalez-Rodriguez A.P., Contesti J., Gonzalez E., López-Soto A., Fernandez-Guizan A., Acebes-Huerta A., de Los Toyos J.R., Lopez-Larrea C., Groh V., Spies T., Gonzalez S. Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunol. Immunother., 2012, Vol. 61, no. 8, pp. 1201-1210.

41. Isernhagen A., Malzahn D., Viktorova E., Elsner L., Monecke S., von Bonin F., Kilisch M., Wermuth J.M., Walther N., Balavarca Y., Stahl-Hennig C., Engelke M., Walter L., Bickeböller H., Kube D., Wulf G., Dressel R. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol. Med., 2015, Vol. 7, no. 11, pp. 109-123.

42. Jia H.-Y., Liu J.-L., Zhou C.-J., Kong F., Yuan M.-Z., Sun W.-D., Wang J., Liu L., Zhao J.-J., Luan Y. High expression of MICA in human kidney cancer tissue and renal cell carcinoma lines. Asian Pac. J. Cancer Prev., 2014, Vol. 15, no. 4, pp. 1715-1717.

43. Jinushi M., Hodi F.S., Dranoff G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl Acad. Sci. USA, , 2006, Vol. 103, no. 24, pp. 9190-9195.

44. Jinushi M., Takehara T., Tatsumi T., Kanto T., Groh V., Spies T., Kimura R., Miyagi T., Mochizuki K., Sasaki Y., Hayashi N. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int. J. Cancer, 2003, Vol. 104, no. 3, pp. 354-361.

45. Jinushi M., Vanneman M., Munshi N.C., Tai Y.-T., Prabhala R.H., Ritz J., Neuberg D., Anderson K.C., Carrasco D.R., Dranoff G. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. PNAS, 2008, Vol. 105, no. 4, pp. 1285-1290.

46. Kaiser B.K., Yim D., Chow I.T., Gonzalez S., Dai Z., Mann H.H., Strong R.K., Groh V., Spies T. Disulphideisomerase-enabled shedding of tumour-associated NKG2D ligands. Nature, 2007, Vol. 447, no. 7143, pp. 482-486.

47. Kato N., Tanaka J., Sugita J., Toubai T., Miura Y., Ibata M., Syono Y., Ota S., Kondo T., Asaka M., Imamura M. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia, 2007, Vol. 21, no. 10, pp. 2103-2108.

48. Kaur K., Safaie T., Ko M.-W., Wang Y., Anahid J. ADCC against MICA/B is mediated against differentiated oral and pancreatic and not stem-like/poorly differentiated tumors by the NK cells; loss in cancer patients due to down-modulation of CD16 receptor. Cancers, 2021, Vol. 13, 239. doi: 10.3390/cancers13020239.

49. Kim J.Y., Son Y.O., Park S.W., Bae J.H., Joo S.C., Hyung H.K., Chung B.S., Kim S.H., Kang C.D. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp. Mol. Med., 2006, Vol. 38, no. 5, pp. 474-484.

50. Kumar V., Yi Lo P.H., Sawai H., Kato N., Takahashi A., Deng Z., Urabe Y., Mbarek H., Tokunaga K., Tanaka Y., Sugiyama M., Mizokami M., Muroyama R., Tateishi R., Omata M., Koike K., Tanikawa C., Kamatani N., Kubo M., Nakamura Y., Matsuda K. Soluble MICA and a MICA variation as possible prognostic biomarkers for HBV-induced hepatocellular carcinoma. PLoS One, 2012, Vol. 7, no. 9, e44743. doi: 10.1371/journal.pone.0044743.

51. Lanier L.L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res., 2016, Vol. 118, no. 24, pp. 6072-6078.

52. Leelayuwat C., Degli-Esposti M.A., Abraham L.J., Dawkins R.L., Townend D.C. A new polymorphic and multicopy MHC gene family related to nonmammalian class I. Immunogenetics, 1994, Vol. 40, no. 5, pp. 339-351.

53. Li J.J., Pan K., Gu M.F., Chen M.S., Zhao J.J., Wang H., Liang X.T., Sun J.C., Xia J.C. Prognostic value of soluble MICA levels in the serum of patients with advanced hepatocellular carcinoma. Chin. J. Cancer, 2013, Vol. 32, no. 3, pp. 141-148.

54. Lombana T.N., Matsumoto M.L., Iii J.B., Berkley A.M., Toy E., Cook R., Gan Y., Du C., Liu P., Sandoval W., Ye Z., Schartner J.M., Kim J., Lombana T.N., Matsumoto M.L., Iii J.B., Berkley A.M., Toy E., Cook R., Gan Y., Du C., Liu P., Schnier P., Sandoval W., Ye Z., Schartner J.M., Kim J., Spiess C. High-resolution glycosylation site-engineering method identifies MICA epitope critical for shedding inhibition activity of anti-MICA antibodies. mAbs, 2019, Vol. 11, no. 1, pp. 75-93.

55. Lu J., Luo L., Guo Y., Long D., Wei L., Shan J., Feng L., Li S., Yang X., Lu Y., Krams S., Li Y. The effect of MICA antigens on transplant outcomes: a systematic review. J. Evid. Based Med., 2011, Vol. 4, no. 2, pp. 106-121.

56. Lu Y., Hu J., Sun W., Duan X., Chen X. Hypoxia-mediated immune evasion of pancreatic carcinoma cells. Mol. Med. Rep., 2015, Vol. 11, no. 5, pp. 3666-3672

57. Lundholm M., Schröder M., Nagaeva O., Baranov V., Widmark A., Mincheva-Nilsson L., Wikström P. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One, 2014, Vol. 9, no. 9, e108925. doi: 10.1371/journal.pone.0108925.

58. Luo D., Dong X.W., Yan B., Liu M., Xue T.H., Liu H., You J.H., Li F., Wang Z.L., Chen Z.N. MG132 selectively upregulates MICB through the DNA damage response pathway in A549 cells. Mol. Med. Rep., 2019, Vol. 19, no. 1, pp. 213-220.

59. Mellergaard M., Skovbakke S.L., Schneider C.L., Lauridsen F., Andresen L., Jensen H., Skov S. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class i chain-related protein a (MICA) alleles dependent on threonine 24. J. Biol. Chem., 2014, Vol. 289, no. 29, pp. 20078-20091.

60. Menier C., Riteau B., Carosella E.D., Rouas-Freiss N. MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal. Int. J. Cancer, 2002, Vol. 100, no. 1, pp. 63-70.

61. Meyer A., Carapito R., Ott L., Radosavljevic M., Georgel P., Adams E.J., Parham P., Bontrop R.E., Blancher A., Bahram S. High diversity of MIC genes in non-human primates. Immunogenetics, 2014, Vol. 66, no. 9-10, pp. 581-587.

62. Mincheva-Nilsson L., Nagaeva O., Chen T., Stendahl U., Antsiferova J., Mogren I., Hernestål J., Baranov V. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol., 2006, Vol. 176, no. 6, pp. 3585-3592.

63. Nakajima N.I., Niimi A., Isono M., Oike T., Sato H., Nakano T., Shibata A. Inhibition of the HDAC/Suv39/ G9a pathway restores the expression of DNA damage-dependent major histocompatibility complex class I-related chain A and B in cancer cells. Oncol. Rep., 2017, Vol. 38, no. 2, pp. 693-702.

64. Okita R., Yukawa T., Nojima Y., Maeda A., Saisho S., Shimizu K., Nakata M. MHC class I chain-related molecule A and B expression is upregulated by cisplatin and associated with good prognosis in patients with nonsmall cell lung cancer. Cancer Immunol. Immunother., 2016, Vol. 65, no. 5, pp. 499-509.

65. Onyeaghala G., Nelson H.H., Thyagarajan B., Linabery A.M., Panoskaltsis-Mortari A., Gross M., Anderson K.E., Prizment A.E. Soluble MICA is elevated in pancreatic cancer: results from a population based casecontrol study. Mol. Carcinog., 2017, Vol. 56, no. 9, pp. 2158-2164.

66. Ostberg J.R., Dayanc B.E., Yuan M., Oflazoglu E., Repasky E.A. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J. Leukoc. Biol., 2007, Vol. 82, no. 5, pp. 1322-1331.

67. Paschen A., Sucker A., Hill B., Moll I., Zapatka M., Xuan D.N., Geok C.S., Gutmann I., Hassel J., Becker J.C., Steinle A., Schadendorf D., Ugurel S. Differential clinical significance of individual NKG2D ligands in melanoma: soluble ULBP2 as an indicator of poor prognosis superior to S100B. Clin. Cancer Res., 2009, Vol. 15, no. 16, pp. 5208-5215.

68. Raulet D.H., Gasser S., Gowen B.G., Deng W., Jung H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol., 2013, Vol. 31, pp. 413-441.

69. Rebmann V., Schütt P., Brandhorst D., Opalka B., Moritz T., Reza Nowrousian M., Grosse-Wilde H. Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin. Immunol., 2007, Vol. 123, no. 1, pp. 114-120.

70. Ribeiro C.H., Kramm K., Gálvez-jirón F., Pola V., Bustamante M., Contreras H.R., Sabag A., Garridotapia M., Hernández C.J., Zúñiga R., Collazo N., Sotelo P.H., Morales C., Mercado L., Catalán D., Aguillón J.C., Molina M.C. Clinical significance of tumor expression of major histocompatibility complex class I-related chains A and B (MICA / B) in gastric cancer patients. Oncol. Rep., 2016, Vol. 35, pp. 1309-1317.

71. Ritter C., Fan K., Paulson K.G., Nghiem P., Schrama D., Jürgen C. Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci. Rep., 2016, Vol. 6, 21678. doi 10.1038/srep21678.

72. Rodríguez-Rodero S., González S., Rodrigo L., Fernández-Morera J.L., Martínez-Borra J., López-Vázquez A., López-Larrea C. Transcriptional regulation of MICA and MICB: a novel polymorphism in MICB promoter alters transcriptional regulation by Sp1. Eur. J. Immunol., 2007, Vol. 37, no. 7, pp. 1938-1953.

73. Salih H.R., Antropius H., Gieseke F., Lutz S.Z., Kanz L., Rammensee H.G., Steinle A. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood, 2003, Vol. 102, no. 4, pp. 1389-1396.

74. Salih H.R., Goehlsdorf D., Steinle A. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum. Immunol., 2006, Vol. 67, no. 3, pp. 188-195.

75. Salih H.R., Holdenrieder S., Steinle A. Soluble NKG2D ligands: prevalence, release, and functional impact. Front. Biosci., 2008, Vol. 13, pp. 3448-3456.

76. Salih H.R., Rammensee H.-G., Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol., 2002, Vol. 169, no. 8, pp. 4098-4102.

77. Schilling D., Tetzlaff F., Konrad S., Li W., Multhoff G. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress Chaperones, 2015, Vol. 20, no. 1, pp. 139-147.

78. Schrambach S., Ardizzone M., Leymarie V., Sibilia J., Bahram S. In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One, 2007, Vol. 2, no. 6, e518. doi: 10.1371/journal.pone.0000518.

79. Sconocchia G., Spagnoli G.C., Del Principe D., Ferrone S., Anselmi M., Wongsena W., Cervelli V., SchultzThater E., Wyler S., Carafa V., Moch H., Terracciano L., Tornillo L. Defective infiltration of natural killer cells in MICA/B-positive renal cell carcinoma involves 2-integrin-mediated interaction. Neoplasia, 2009, Vol. 11, no. 7, pp. 662-671.

80. Shi P., Yin T., Zhou F., Cui P., Gou S., Wang C. Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer, 2014, Vol. 14, no. 1, pp. 1-10.

81. Siemens D.R., Hu N., Sheikhi A.K., Chung E., Frederiksen L.J., Pross H., Graham C.H. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res., 2008, Vol. 68, no. 12, pp. 4746-4754.

82. Strong R.K., McFarland B.J. NKG2D and related immunoreceptors. Adv. Protein Chem., 2004, Vol. 68, pp. 281-312.

83. Suemizu H., Radosavljevic M., Kimura M., Sadahiro S., Yoshimura S., Bahram S., Inoko H. A basolateral sorting motif in the MICA cytoplasmic tail. Proc. Natl Acad. Sci. USA, 2002, Vol. 99, no. 5, pp. 2971-2976.

84. Sun D., Wang X., Zhang H., Deng L., Zhang Y. MMP9 mediates MICA shedding in human osteosarcomas. Cell Biol. Int., 2011, Vol. 35, no. 6, pp. 569-574.

85. Tamaki S., Kawakami M., Ishitani A., Kawashima W., Kasuda S., Yamanaka Y., Shimomura H., Imai Y., Nakagawa Y., Hatake K., Kirita T. Soluble MICB serum levels correlate with disease stage and survival rate in patients with oral squamous cell carcinoma. Anticancer Res., 2010, Vol. 30, no. 10, pp. 4097-4101.

86. Tamaki S., Kawakami M., Yamanaka Y., Shimomura H., Imai Y., Ishida J. ichi, Yamamoto K., Ishitani A., Hatake K., Kirita T. Relationship between soluble MICA and the MICA A5.1 homozygous genotype in patients with oral squamous cell carcinoma. Clin. Immunol., 2009, Vol. 130, no. 3, pp. 331-337.

87. Tamaki S., Sanefuzi N., Kawakami M., Aoki K., Imai Y., Yamanaka Y., Yamamoto K., Ishitani A., Hatake K., Kirita T. Association between soluble MICA levels and disease stage IV oral squamous cell carcinoma in Japanese patients. Hum. Immunol., 2008, Vol. 69, no. 2, pp. 88-93.

88. Tieng V., le Bouguénec C., du Merle L., Bertheau P., Desreumaux P., Janin A., Charron D., Toubert A. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl Acad. Sci. USA, 2002, Vol. 99, no. 5, pp. 2977-2982.

89. Trembath A.P., Markiewicz M.A. More than decoration: Roles for natural killer group 2 member D ligand expression by immune cells. Front. Immunol., 2018, Vol. 9, 231. doi: 10.3389/fimmu.2018.00231.

90. Venkataraman G.M., Suciu D., Groh V., Boss J.M., Spies T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-Related chain A and B ligands of NKG2D. J. Immunol., 2007, Vol. 178, no. 2, pp. 961-969.

91. Wang L.P., Niu H., Xia Y.F., Han Y.L., Niu P., Wang H.Y., Zhou Q.L. Prognostic significance of serum sMICA levels in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci., 2015, Vol. 19, no. 12, pp. 2226-2230

92. Wang T., Sun F., Xie W., Tang M., He H., Jia X., Tian X., Wang M., Zhang J. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett., 2016, Vol. 372, no. 2, pp. 166-178.

93. Wang X., Lundgren A.D., Singh P., Goodlett D.R., Stephen R., Wu J.D. An six-amino therapeutic target to inhibit shedding. Biochem. Biophys. Res. Commun., 2010, Vol. 387, pp. 476-481.

94. Watson N.F.S., Spendlove I., Madjd Z., McGilvray R., Green A.R., Ellis I.O., Scholefield J.H., Durrant L.G. Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int. J. Cancer, 2006, Vol. 118, no. 6, pp. 1445-1452.

95. Weiss T., Schneider H., Silginer M., Steinle A., Pruschy M., Polic B., Weller M., Roth P. NKG2D-Dependent antitumor effects of chemotherapy and radiotherapy against glioblastoma. Clin. Cancer Res., 2017, Vol. 24, no. 4, pp. 882-895.

96. Weiss-Steider B., Soto-Cruz I., Martinez-Campos C.A., Mendoza-Rincon J.F. Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells. J. Exp. Clin. Cancer Res., 2011, Vol. 30, no. 1, pp. 1-8.

97. Wensveen F.M., Jelenc V., Polic B. NKG2D: a master regulator of immune cell responsiveness. Front. Immunol., 2018, Vol. 9, 441. doi: 10.3389/fimmu.2018.00441.

98. Wills M.R., Ashiru O., Reeves M.B., Okecha G., Trowsdale J., Tomasec P., Wilkinson G.W.G., Sinclair J., Sissons J.G.P. Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. J. Immunol., 2005, Vol. 175, no. 11, pp. 7457-7465.

99. Wu B.J., Li W.P., Qian C., Ding W., Zhou Z.W., Jiang H. Serum soluble MICB (sMICB) correlates with disease progression and survival in melanoma patients. Tumor Biol., 2013, Vol. 34, no. 1, pp. 565-569.

100. Wu Y., Li J., Jabbarzadeh Kaboli P., Shen J., Wu X., Zhao Y., Ji H., Du F., Zhou Y., Wang Y., Zhang H., Yin J., Wen Q., Cho C.H., Li M., Xiao Z. Natural killer cells as a double-edged sword in cancer immunotherapy: a comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol. Res., 2020, Vol. 155, 104691. doi: 10.1016/j.phrs.2020.104691].

101. Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol., 2002, Vol. 3, no. 8, pp. 487-497.

102. Xei W., Liu F., Wang Y., Ren X., Wang T., Chen Z., Tang M., Sun F., Li Z., Wang M., Zhang J. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent antitumor activity against breast cancer. Oncotarget, 2016, Vol. 7, no. 13, pp. 16455-16471.

103. Xu X., Rao G.S., Groh V., Spies T., Gattuso P., Kaufman H.L., Plate J., Prinz R.A. Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer, 2011, Vol. 11, 194. doi: 10.1186/14712407-11-194.

104. Yamada N., Yamanegi K., Ohyama H., Hata M., Nakasho K., Futani H., Okamura H., Terada N. Hypoxia downregulates the expression of cell surface MICA without increasing soluble MICA in osteosarcoma cellsin a HIF-1- dependent manner. Int. J. Oncol., 2012, Vol. 41, no. 6, pp. 2005-2012.

105. Zhang C., Wang Y., Zhou Z., Zhang J., Tian Z. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol. Immunother., 2009, Vol. 58, no. 8, pp. 1275-1285.

106. Zhang X., Yan L., Jiao W., Ren J., Xing N. The clinical and biological significance of MICA in clear cell renal cell carcinoma patients. Tumor Biol., 2016, Vol. 37, pp. 2153-2159.

107. Zhao S., Wang H., Nie Y., Mi Q., Chen X., Hou Y. Midkine upregulates MICA/B expression in human gastric cancer cells and decreases natural killer cell cytotoxicity. Cancer Immunol. Immunother., 2012, Vol. 61, no. 10, pp. 1745-1753.

108. Zhao Y., Chen N., Yu Y., Zhou L., Niu C., Liu Y., Tian H., Lv Z., Han F., Cui J. Prognostic value of MICA / B in cancers: a systematic review. Oncotarget, 2017, Vol. 8, no. 56, pp. 96384-96395.

109. Zingoni A., Cecere F., Vulpis E., Fionda C., Molfetta R., Soriani A., Petrucci M.T., Ricciardi M.R., Fuerst D., Amendola M.G., Mytilineos J., Cerboni C., Paolini R., Cippitelli M., Santoni A. Genotoxic stress induces senescenceassociated ADAM10-dependent release of NKG2D MIC ligands in multiple myeloma cells, J. Immunol., 2015, Vol. 195, no. 2, pp. 736-748.

110. Zou Y., Bresnahan W., Taylor R.T., Stastny P. Effect of human cytomegalovirus on expression of MHC class I-Related chains A. J. Immunol., 2005, Vol. 174, no. 5, pp. 3098-3104.

111. Zou Y., Mirbaha F., Lazaro A., Zhang Y., Lavingia B., Stastny P. MICA is a target for complement-dependent cytotoxicity with mouse monoclonal antibodies and human alloantibodies. Hum. Immunol., Vol. 63, pp. 30-39.

112. Zwirner N.W., Dole K., Stastny P. Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes. Hum. Immunol., 1999, Vol. 60, no. 4, pp. 323-330.

113. Zwirner N.W., Fuertes M.B., Girart M.V., Domaica C.I., Rossi L.E. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev., 2007, Vol. 18, no. 1-2, pp. 159-170.


Дополнительные файлы

Рецензия

Для цитирования:


Столбовая А.Ю., Смирнов И.В., Самойлович М.П. Cтресс-индуцированные молекулы MICA и MICB в онкологии. Медицинская иммунология. 2022;24(3):433-454. https://doi.org/10.15789/1563-0625-SIM-2480

For citation:


Yurevna S.A., Smirnov I.V., Samoylovich M.P. Stress-induced MICA and MICB molecules in oncology. Medical Immunology (Russia). 2022;24(3):433-454. (In Russ.) https://doi.org/10.15789/1563-0625-SIM-2480

Просмотров: 59


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)