Preview

Medical Immunology (Russia)

Advanced search

Microvesicles derived from leukocytes in the peripheral blood of patients with external genital endometriosis

https://doi.org/10.15789/1563-0625-MDF-2447

Abstract

Endometriosis is a chronic gynecological disease, which poses a serious problem in terms of diagnosis and treatment. Despite decades of research, there are no specific signs and symptoms and no blood tests to clinically confirm the diagnosis, which makes timely diagnosis and treatment difficult. Therefore, the search for new markers for early non-invasive diagnosis of the disease remains relevant. Various subcellular structures involved in intercellular communication, in particular, microvesicles, can be considered promising biological markers for external genital endometriosis. The aim of this work was to assess the composition of microvesicles derived from leukocytes in the peripheral blood of patients with stage I-II of external genital endometriosis and the possibility of their use as markers of non-invasive diagnosis of peritoneal forms of endometriosis. The study involved 97 women aged 26-40 with stage I-II of external genital endometriosis, whose diagnosis was established intraoperatively and confirmed histologically. Pain syndrome was noted in all patients of the main group, with infertility also detected in 73.2% of the patients. The control group consisted of 20 patients, whose average age was 25.5±1.1 years, who were examined in connection with male infertility factor before the in vitro fertilization, and in whom, on the basis of intraoperative examination, presented no gynecological diseases, and no pain syndrome. Before the surgical intervention, peripheral blood was taken from all patients to determine the content of microvesicles derived from leukocytes. To isolate microvesicles, we used the previously described by M.P. Gelderman and J. Simak method. It was found that patients with stage I-II of external genital endometriosis experience an increase in the number of CD14+, CD16+ and CD54+CD14+ microvesicles in the peripheral blood by 1.1, 1.38 and 1.55 times, respectively, as well as a decrease in the number of CD45+CD4+, CD3+CD4+, CD3+CD8+ microvesicles by 1.2, 4 and 1.5 times, respectively, compared with patients from the control group. Therefore, in patients with stage I-II of external genital endometriosis, an increase in the relative number of CD54+CD14+ microvesicles in the peripheral blood above 5.22% can serve as a marker for early non-invasive diagnosis of the disease with sensitivity of 80.5% and specificity of 71%.

 

About the Authors

M. I. Yarmolinskaya
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Yarmolinskaya Maria I., PhD, MD (Medicine), Professor, Russian Academy of Sciences, Head, Department of Gynecology and Endocrinology; Head, Center “Diagnostics and Treatment of Endometriosis”

St. Petersburg



E. I. Durneva
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Durneva Elena I., Research Associate, Department of Gynecology and Endocrinology

St. Petersburg



K. L. Markova
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Markova Kseniia L. D., Junior Research Associate, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions

199034, St. Petersburg, Mendeleevskaya line, 3



V. A. Mikhailova
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Mikhailova Valentina A., PhD (Biology), Senior Research Associate, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions, D. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Senior Lecturer, First St. Petersburg State I. Pavlov Medical University

St. Petersburg



S. A. Selkov
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Selkov Sergey A., PhD, MD (Medicine), Professor, Honored Scientist of Russian Federation, Head, Department of Immunology and Cell Interactions

St. Petersburg



D. I. Sokolov
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Sokolov Dmitry I., PhD, MD (Biology), Head, Laboratory of Cell Interactions, D. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Associate Professor, First St. Petersburg State I. Pavlov Medical University

St. Petersburg



References

1. Abels E.R., Breakefield X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell. Mol. Neurobiol., 2016, Vol. 36, no. 3, pp. 301-312.

2. Agarwal S.K., Chapron C., Giudice L.C., Laufer M.R., Leyland N., Missmer S.A., Singh S.S., Taylor H.S. Clinical diagnosis of endometriosis: a call to action. Am. J. Obstet. Gynecol., 2019, Vol. 220, no. 4, pp. 354 e1-354 e12.

3. Ahn S.H., Singh V., Tayade C. Biomarkers in endometriosis: challenges and opportunities. Fertil. Steril., 2017, Vol. 107, no. 3, pp. 523-532.

4. Akoum A., Kong J., Metz C., Beaumont M.C. Spontaneous and stimulated secretion of monocyte chemotactic protein-1 and macrophage migration inhibitory factor by peritoneal macrophages in women with and without endometriosis. Fertil. Steril., 2002, Vol. 77, no. 5, pp. 989-994.

5. Antonyak M.A., Cerione R.A. Microvesicles as mediators of intercellular communication in cancer. Methods Mol. Biol., 2014, Vol. 1165, no, pp. 147-173.

6. Caza T., Landas S. Functional and phenotypic plasticity of CD4(+) T Cell subsets. Biomed Res. Int., 2015, Vol. 2015, 521957. doi: 10.1155/2015/521957.

7. D’Souza-Schorey C., Clancy J.W. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev., 2012, Vol. 26, no. 12, pp. 1287-1299.

8. de Barros I.B.L., Malvezzi H., Gueuvoghlanian-Silva B.Y., Piccinato C.A., Rizzo L.V., Podgaec S. What do we know about regulatory T cells and endometriosis? A systematic review. J. Reprod. Immunol., 2017, Vol. 120, pp. 48-55.

9. Eksioglu-Demiralp E., Direskeneli H., Kibaroglu A., Yavuz S., Ergun T., Akoglu T. Neutrophil activation in Behcet’s disease. Clin. Exp. Rheumatol., 2001, Vol. 19, no. 5, Suppl. 24, pp. S19-S24.

10. Fassbender A., Burney R.O., O D.F., D’Hooghe T., Giudice L. Update on biomarkers for the detection of endometriosis. Biomed Res. Int., 2015, Vol. 2015, 130854. doi: 10.1155/2015/130854.

11. Friedrich K., Sommer M., Strobel S., Thrum S., Bluher M., Wagner U., Rossol M. Perturbation of the monocyte compartment in human obesity. Front. Immunol., 2019, Vol. 10, 1874. doi: 10.3389/fimmu.2019.01874.

12. Fukui A., Mai C., Saeki S., Yamamoto M., Takeyama R., Kato T., Ukita Y., Wakimoto Y., Yamaya A., Shibahara H. Pelvic endometriosis and natural killer cell immunity. Am. J. Reprod. Immunol., 2021, Vol. 85, no. 4, e13342. doi: 10.1111/aji.13342.

13. Gelderman M.P., Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol. Biol., 2008, Vol. 484, pp. 79-93.

14. Giuliani E., Parkin K.L., Lessey B.A., Young S.L., Fazleabas A.T. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am. J. Reprod. Immunol., 2014, Vol. 72, no. 3, pp. 262-269.

15. Hara S., Yokote T., Akioka T., Miyoshi T., Ikemoto T., Tanaka H., Takubo T., Tsuji M., Hanafusa T. Flow cytometric immunophenotyping of peripheral T cell neoplasms using CD3 gating. Acta Haematol., 2009, Vol. 121, no. 1, pp. 11-18.

16. Haziot A., Tsuberi B.Z., Goyert S.M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J. Immunol., 1993, Vol. 150, no. 12, pp. 5556-5565.

17. Heimbeck I., Hofer T.P., Eder C., Wright A.K., Frankenberger M., Marei A., Boghdadi G., Scherberich J., Ziegler-Heitbrock L. Standardized single-platform assay for human monocyte subpopulations: Lower CD14+CD16++ monocytes in females. Cytometry A, 2010, Vol. 77, no. 9, pp. 823-830.

18. Hillel A.T., Ding D., Samad I., Murphy M.K., Motz K. T-Helper 2 Lymphocyte immunophenotype is associated with iatrogenic laryngotracheal stenosis. Laryngoscope, 2019, Vol. 129, no. 1, pp. 177-186.

19. Hussein M.N.A., Boing A.N., Sturk A., Hau C.M., Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb. Haemost., 2007, Vol. 98, no. 5, pp. 1096-1107.

20. Irungu S., Mavrelos D., Worthington J., Blyuss O., Saridogan E., Timms J.F. Discovery of non-invasive biomarkers for the diagnosis of endometriosis. Clin. Proteomics, 2019, Vol. 16, 14. doi: 10.1186/s12014-019-9235-3.

21. Jakel C.E., Schmidt-Wolf I.G. An update on new adoptive immunotherapy strategies for solid tumors with cytokine-induced killer cells. Expert Opin. Biol. Ther., 2014, Vol. 14, no. 7, pp. 905-916.

22. Khan K.N., Yamamoto K., Fujishita A., Muto H., Koshiba A., Kuroboshi H., Saito S., Teramukai S., Nakashima M., Kitawaki J. Differential levels of regulatory t cells and t-helper-17 cells in women with early and advanced endometriosis. J. Clin. Endocrinol. Metab., 2019, Vol. 104, no. 10, pp. 4715-4729.

23. Kunnathully V., Gomez-Lira M., Bassi G., Poli F., Zoratti E., La Verde V., Idolazzi L., Gatti D., Viapiana O., Adami S., Rossini M. CD14(++) CD16(-) monocytes are the main source of 11beta-HSD type 1 after IL-4 stimulation. Int. Immunopharmacol., 2017, Vol. 43, pp. 156-163.

24. Lee T.H., D’Asti E., Magnus N., Al-Nedawi K., Meehan B., Rak J. Microvesicles as mediators of intercellular communication in cancer – the emerging science of cellular ‘debris’. Semin. Immunopathol., 2011, Vol. 33, no. 5, pp. 455-467.

25. Li Y.N., Zhou L.X., Fang B., Mao K.J., Wen W.B., Yu T.O., Zou Y.C., Li W.Y., Li C. Human leucocyte antigenDR expression on CD(14)(+) monocytes and its relationships with multiple organ dysfunction syndrome in severe sepsis. Nan Fang Yi Ke Da Xue Xue Bao, 2009, Vol. 29, no. 7, pp. 1372-1374.

26. Ma M., Yin X., Zhao X., Guo C., Zhu X., Liu T., Yang M., Zhang Z., Fu Y., Liu J., Xu J., Ding H., Han X., Chu Z., Shang H., Jiang Y. CD56(-) CD16(+) NK cells from HIV-infected individuals negatively regulate IFNgamma production by autologous CD8(+) T cells. J. Leukoc. Biol., 2019, Vol. 106, no. 6, pp. 1313-1323.

27. Mause S.F., Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res., 2010, Vol. 107, no. 9, pp. 1047-1057.

28. Monsanto S.P., Edwards A.K., Zhou J., Nagarkatti P., Nagarkatti M., Young S.L., Lessey B.A., Tayade C. Surgical removal of endometriotic lesions alters local and systemic proinflammatory cytokines in endometriosis patients. Fertil. Steril., 2016, Vol. 105, no. 4, pp. 968-977 e5.

29. Munros J., Martinez-Zamora M.A., Tassies D., Coloma J.L., Torrente M.A., Reverter J.C., Carmona F., Balasch J. Total circulating microparticle levels are increased in patients with deep infiltrating endometriosis. Hum. Reprod., 2017, Vol. 32, no. 2, pp. 325-331.

30. Munros J., Martinez-Zamora M.A., Tassies D., Reverter J.C., Rius M., Gracia M., Ros C., Carmona F. Total circulating microparticle levels after laparoscopic surgical treatment for endometrioma: a pilot, prospective, randomized study comparing stripping with CO2 laser vaporization. J. Minim. Invasive Gynecol., 2019, Vol. 26, no. 3, pp. 450-455.

31. Nnoaham K.E., Hummelshoj L., Webster P., d’Hooghe T., de Cicco Nardone F., de Cicco Nardone C., Jenkinson C., Kennedy S.H., Zondervan K.T., World Endometriosis Research Foundation Global Study of Women’s Health consortium. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil. Steril., 2011, Vol. 96, no. 2, pp. 366-373 e8.

32. Osuga Y., Koga K., Hirota Y., Hirata T., Yoshino O., Taketani Y. Lymphocytes in endometriosis. Am. J. Reprod. Immunol., 2011, Vol. 65, no. 1, pp. 1-10.

33. Rajamanickam A., Munisankar S., Dolla C., Menon P.A., Nutman T.B., Babu S. Helminth coinfection alters monocyte activation, polarization, and function in latent mycobacterium tuberculosis infection. J. Immunol., 2020, Vol. 204, no. 5, pp. 1274-1286.

34. Rheinlander A., Schraven B., Bommhardt U. CD45 in human physiology and clinical medicine. Immunol. Lett., 2018, Vol. 196, pp. 22-32.

35. Riccio L., Santulli P., Marcellin L., Abrao M.S., Batteux F., Chapron C. Immunology of endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol., 2018, Vol. 50, pp. 39-49.

36. Roy-Chowdhury E., Brauns N., Helmke A., Nordlohne J., Brasen J.H., Schmitz J., Volkmann J., Fleig S.V., Kusche-Vihrog K., Haller H., von Vietinghoff S. Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1-CX3CL1 interaction. Cardiovasc. Res., 2021, Vol. 117, no. 6, pp. 1510-1522.

37. Sciezynska A., Komorowski M., Soszynska M., Malejczyk J. NK Cells as potential targets for immunotherapy in endometriosis. J. Clin. Med., 2019, Vol. 8, no. 9, 1468. doi: 10.3390/jcm8091468.

38. Suades R., Padro T., Alonso R., Lopez-Miranda J., Mata P., Badimon L. Circulating CD45+/CD3+ lymphocytederived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thromb. Haemost., 2014, Vol. 111, no. 1, pp. 111-121.

39. Sun R., Fan J., Wei H., Zhang C., Tian Z. Use of interleukin-15 for preparation of adherent NK cells from human peripheral blood: comparison with interleukin-2. J. Immunol. Methods, 2003, Vol. 279, no. 1-2, pp. 79-90.

40. Symons L.K., Miller J.E., Kay V.R., Marks R.M., Liblik K., Koti M., Tayade C. The immunopathophysiology of endometriosis. Trends Mol. Med., 2018, Vol. 24, no. 9, pp. 748-762.

41. Szyllo K., Tchorzewski H., Banasik M., Glowacka E., Lewkowicz P., Kamer-Bartosinska A. The involvement of T lymphocytes in the pathogenesis of endometriotic tissues overgrowth in women with endometriosis. Mediators Inflamm., 2003, Vol. 12, no. 3, pp. 131-138.

42. Taniuchi I. CD4 Helper and CD8 cytotoxic t cell differentiation. Annu. Rev. Immunol., 2018, Vol. 36, pp. 579-601.

43. Tohma S., Ramberg J.E., Lipsky P.E. Expression and distribution of CD11a/CD18 and CD54 during human T cell-B cell interactions. J. Leukoc. Biol., 1992, Vol. 52, no. 1, pp. 97-103.

44. van Acker H.H., Capsomidis A., Smits E.L., van Tendeloo V.F. CD56 in the immune system: more than a marker for cytotoxicity? Front. Immunol., 2017, Vol. 8, 892. doi: 10.3389/fimmu.2017.00892.

45. Wang X.Q., Hu M., Chen J.M., Sun W., Zhu M.B. Effects of gene polymorphism and serum levels of IL-2 and IL-6 on endometriosis. Eur. Rev. Med. Pharmacol. Sci., 2020, Vol. 24, no. 9, pp. 4635-4641.

46. Wright H.L., Moots R.J., Bucknall R.C., Edwards S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford), 2010, Vol. 49, no. 9, pp. 1618-1631.

47. Wu J., Gong R.L., Hu Q.F., Chen X.T., Zhao W., Chen T.X. Immunoregulatory effect of human betadefensin 1 on neonatal cord blood monocyte-derived dendritic cells and T cells. Mol. Immunol., 2019, Vol. 109, no, pp. 99-107.

48. Xu X., Chong A.S. Cross-linking of CD45 on NK cells stimulates p56lck-mediated tyrosine phosphorylation and IFN-gamma production. J. Immunol., 1995, Vol. 155, no. 11, pp. 5241-5248.

49. Zdolsek H.A., Ernerudh J., Holt P.G., Nilsson J., Bjorksten B. Expression of the T-cell markers CD3, CD4 and CD8 in healthy and atopic children during the first 18 months of life. Int. Arch. Allergy Immunol., 1999, Vol. 119, no. 1, pp. 6-12.

50. Zondervan K.T., Becker C.M., Koga K., Missmer S.A., Taylor R.N., Vigano P. Endometriosis. Nat. Rev. Dis. Primers, 2018, Vol. 4, no. 1, 9. doi: 10.1038/s41572-018-0008-5.


Supplementary files

Review

For citations:


Yarmolinskaya M.I., Durneva E.I., Markova K.L., Mikhailova V.A., Selkov S.A., Sokolov D.I. Microvesicles derived from leukocytes in the peripheral blood of patients with external genital endometriosis. Medical Immunology (Russia). 2022;24(2):327-336. https://doi.org/10.15789/1563-0625-MDF-2447

Views: 418


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)