Preview

Медицинская иммунология

Расширенный поиск

Патогенетическое значение клеточного инфильтрата при иммуновоспалительных ревматических заболеваниях

https://doi.org/10.15789/1563-0625-PVO-2386

Полный текст:

Аннотация

Клеточный инфильтрат является морфологическим субстратом иммуновоспалительных ревматических заболеваний. Cистемная прогрессирующая дезорганизация рыхлой волокнистой соединительной ткани сопровождается утратой толерантности с собственными аутоантигенами, активацией клеток макрофагально-моноцитарного ряда и аутореактивных клонов Т- и В-лимфоцитов. Гиперпродукция провоспалительных хемо- и цитокинов, локальные адгезионные лиганд-рецепторные взаимодействия, эндотелиальная реакция и ангиогенез способствуют формированию клеточного инфильтрата, эктопических лимфоидных структур и ГЗТ-гранулем in situ. Аутоиммунный ответ является следствием последовательных системных и местных молекулярно-клеточных событий, в которых задействованы механизмы врожденного и адаптивного иммунитета. При интерпретации иммунопатогенеза ревматических заболеваний применяются все модели и схемы, принятые в области фундаментальной иммунологии. Это модель МНС-рестрикции, модель молекулярной мимикрии, или перекрестной (кросс) АГ-презентации, модель срыва центральной или периферической толерантности к ауто-АГ, модель кандидатных «триггеров» аутоиммунных и аутовоспалительных процессов, модель ассоциаций аллелей МНС I и II классов с конкретными, нозологически уникальными, ревматическими заболеваниями.

Об авторе

М. З. Саидов
ФГБОУ ВО Дагестанский государственный медицинский университет
Россия

Саидов Марат Зиявдинович - доктор медицинских наук, профессор, заведующий кафедрой патологической физиологии/

367000, Республика Дагестан, г. Махачкала, пл. Ленина, 1. Тел.: 8 (988) 300-90-45


Конфликт интересов:

нет



Список литературы

1. Адо А.А. Патофизиология фагоцитов (краткий очерк истории и современного состояния учения о фагоцитозе). М.: Медгиз, 1961. 295 с.

2. Богомолец А.А. Избранные труды в трех томах. Киев: Издательство Академии наук УССР, 1957. Т. 2. С. 312-323.

3. Воспаление. Руководство для врачей. Под ред. В.В. Струкова, В.С. Паукова. М.: Медицина, 1995. С. 219.

4. Давыдовский И.В. Общая патология человека. М.: Медицина, 1969. С. 425, 317.

5. Кумар А., Аббас А.К., Фаусто А. Основы патологии заболеваний по Роббинсу и Котрану. М.: Логосфера, 2016. Т. 2, 3.

6. Маянский Д.Н. Хроническое воспаление. М.: Медицина, 1991. С. 24. [Mayanskiy D.N. Chronic inflammation]. Moscow: Medicine, 1991, p. 24.

7. Мечников И.И. Лекции о сравнительной патологии воспаления. М.: АН СССР, 1954. 267 с.

8. Насонов Е.Л., Авдеева А.С. Иммуновоспалительные ревматические заболевания, связанные с интерфероном типа I: новые данные // Научно-практическая ревматология, 2019. Т. 57, № 4. С. 452-461.

9. Раденска-Лоповoк С.Г. Иммуноморфологическая характеристика синовиальной оболочки при ревматических заболеваниях // Архив патологии, 2016. № 4. C. 64-68.

10. Саидов М.З., Насонова В.А., Османов А.О., Мамаев И.А., Раденска-Лоповок С.Г., Насонов Е.Л. Иммунофенотипирование клеток воспалительного инфильтрата при ревматоидных синовитах // Иммунология, 2002. Т. 23, № 1. С.18-22.

11. Саидов М.З., Насонова В.А., Османов А.О., Мамаев И.А., Раденска-Лоповок С.Г., Насонов Е.Л. Иммуногистохимическое изучение клеток воспалительного инфильтрата при дерматомиозите // Иммунология, 2002. Т. 23, № 3. 147-152.

12. Серов В.В., Шехтер А.Б. Соединительная ткань. М., Медицина, 1981. 312 с.

13. Струков А.И., Бегларян А.Г. Патологическая анатомия и патогенез коллагеновых болезней. М.: Медгиз, 1963. 323 с.

14. Эйнгрон А.Г. Патологическая анатомия и патологическая физиология. М.: Медицина, 1983. 304 с.

15. Alam J., Yong C.K, Choi Y. Potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry. Immune Netw., 2014, Vol.14, no. 1, pp. 7-13.

16. Alsina L., Israelsson E., Altman M.C., Dang K.K., Ghandil P., Chaussabel D. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat. Immunol., 2014, Vol. 15, no. 12, pp. 1134-1142.

17. Angiolillo A.L., Kanegane H., Sgadari C., Reaman G.H., Tosato G. Interleukin-15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commu., 1997, Vol. 233, no. 1, pp. 231-237.

18. Arai M., Ikawa Y., Chujo S., Hamaguchi Y., Ishida W., Hasegawa M., Mukaida N., Fujimoto M., Takehara K. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J. Dermatol. Sci., 2013, Vol. 69, no. 3, pp. 250-258.

19. Auerbach W., Auerbach R. Angiogenesis inhibition: a review. Pharmac. Ther., 1994, Vol. 63, no. 3, pp. 265-311.

20. Bachem A., Hartung E., Guttler S., Mora A., Zhou X., Hegemann A., Plantinga M., Mazzini E., Stoitzner P., Gurka S., Henn V., Mages H.W., Kroczek A. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol., 2012, Vol. 3, 214. doi: 10.3389/fimmu.2012.00214.

21. Banchereau J., Pascual V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity, 2006, Vol. 25, no. 3, pp. 383-392.

22. Banchereau R., Cepika A.M., Banchereau J., Pascual V. Understanding human autoimmunity and autoinflammation through transcriptomics. Annu. Rev. Immunol., 2017, Vol. 35, pp. 337-370.

23. Barkauskaite V., Ek M., Popovic K., Harris H.E., Wahren-Herlenius M., Nyberg F. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus, 2007, Vol. 16, no. 10, pp. 794-802.

24. Baumann I., Kolowos W., Voll R.E., Manger B., Gaipl U., Neuhuber W.L. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum., 2002, Vol. 46, no. 1, pp. 191-201.

25. Blanco P., Palucka A.K., Gill M., Pascual V., Banchereau J. Induction of dendritic cell differentiation by IFNalpha in systemic lupus erythematosus. Science, 2001, Vol. 294, pp. 1540-1543.

26. Blander J.M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol., 2018, Vol. 36, pp. 717-753.

27. Blissett A.R., Garbellini D., Calomeni E.P., Mihai C., Elton T.S., Agarwai G. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J. Mol. Biol., 2009, Vol. 385, 902-911.

28. Blokland S.L.M., Hillen M.R., Kruize A.A., Meller S., Homey B., Smithson G.M., Radstake T.R.D.J., van Roon J. Increased CCL25 and T helper cells expressing CCR9 in the salivar glands of patients with primary sjogren’s syndrome: potential new axis in lymphoid neogenesis. Arthr. Rheumatol., 2017, Vol. 69, no. 10, pp. 2038-2051.

29. Braga T.T., Agudelo J.S., Camara N.O. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol., 2015, Vol. 6, 602. doi: 10.3389/fimmu.2015.00602.

30. Breitfeld D., Ohl L., Kremmer E., Ellwart J., Sallusto F., Lipp M. Forster R. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med., 2000, Vol. 192, no. 11, pp. 1545-1552.

31. Bresnihan B., Pontifex E., Thurlings R.M., Vinkenoog M., Gabalawy H., Fearon U., Fitzgerald O., Gerlag D.M., Rooney T., van de Sande M.G., Veale D., Vos K., Tak P.-P. Synovial tissue sublining CD68 expression is a biomarker of therapeutic response in rheumatoid arthritis clinical trials: consistency across centers. J. Rheumatol., 2009, Vol. 36, no. 8, pp. 1800-1802.

32. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, Vol. 303, pp. 1532-1535.

33. Burrage P.S., Mix K.S., Brinckerhoff C.E. Matrix metallоproteinases: role in arthritis. Front Biosci., 2006, Vol. 11, no. 1, pp. 529-543.

34. Canna S.W., de Jesus A.A., Gouni S., Brooks S.R., Marrero B., Liu Y., DiMattia M.A., Zaal K.J.M., Montealegre Sanchez G.A., Kim H., Chapelle D., Plass N., Huang Y., Villarino A.V., Biancotto A., Fleisher T.A., Duncan J.A., O’Shea J.J., Benseler S., Grom A., Deng Z., Laxer R.M., Golbdach-Mansky R. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet., 2014, Vol. 46, no. 10, pp. 1140-1146.

35. Carmona-Rivera C., Zhao W., Yalavarthi S., Kaplan M.J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis., 2015, Vol. 74, no. 7, pp. 1417-1424.

36. Carulli M. T., Ong V.H., Ponticos M., Shiwen X., Abraham D.J., Black C.V., Denton C.P. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum., 2005, Vol. 52, no. 12, pp. 3772-3782.

37. Casciola-Rosen L.A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med., 1994, Vol. 179, no. 4, pp. 1317-1330.

38. Chang A., Henderson S.G., Brandt D., Liu N., Guttikonda R., Hsieh C., Kaverina N., Utset T.O., Meehan S.M., Quigg R.J., Meffre E., Clark R. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol., 2011, Vol. 186, no. 3, pp. 1849-1860.

39. Christensen S.R., Shupe J., Nickerson K., Kashgarian M., Flavell R.A., Shlomchik M.J. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity, 2006. Vol. 25, no. 3, pp. 417-428.

40. Crawford Y., Kasman I., Yu L. Zhong C., Wu X., Modrusan Z., Kaminker J., Ferrara N. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 2009, Vol. 15, no. 1, pp. 21-34.

41. Crosby J.R., Tappan K.A., Seifert R.A., Bowen-Pope D.F. Chimera analysis reveals that fibroblasts and endothelial cells require platelet-derived growth factor receptor-beta expression for participation in reactive connective tissue formation in adults but not during development. Am. J. Pathol., 1999, Vol. 154, pp. 131-1321.

42. Crotty S. Follicular helper CD4 T cells (TFH). Ann. Rev. Immunol., 2011, Vol. 29, pp. 621-663.

43. Crow Y.J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. N. Y. Acad. Sci., 2011, Vol. 1238, no. 1, pp. 91-98.

44. Darrah E., Rosen A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ., 2010, Vol. 17, no. 4, pp. 624-632.

45. De Paepe B., Creus K.K., De Bleecker J.L. Chemokines in idiopathic inflammatory myopathies. Front. Biosci., 2008, Vol. 13, pp. 2548-2577.

46. De Paepe B., Creus K. K., De Bleecker J. L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol., 2009, Vol. 21, no. 6, pp. 610-616.

47. Decker P., Kotter I., Klein R., Berner B., Rammensee H.G. Monocyte-derived dendritic cells over-express CD86 in patients with systemic lupus erythematosus. Rheumatology, 2006, Vol. 45, no. 9, pp. 1087-1095.

48. Dennis G. Jr., Holweg C.T., Kummerfeld S.K., Choy D.F., Setiadi A.F., Hackney J.A., Haverty P.M., Gilbert H., Lin W.Y., Diehl L., Fischer S., Song A., Musselman D., Klearman M., Gabay C., Kavanaugh A., Endres J., Fox D.A., Martin F., Townsend M. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthr. Res. Ther., 2014, Vol. 16, no. 2, R90. doi: 10.1186/ar4555.

49. Dieguez-Gonzalez R., Calaza M., Perez-Pampin E. Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis. Art hritis Rheum., 2008, Vol. 58, no. 5, pp. 1264-1274.

50. Doster R.S., Rogers L.M., Gaddy J.A., Aronoff D.M. Macrophage Extracellular Traps: A Scoping Review. J. Innate Immun., 2017, Vol. 10, no. 1, pp. 3-13.

51. Ek M., Popovic K., Harris H.E., Naucler C.S., Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum., 2006, Vol. 54, no. 7, pp. 2289-2294.

52. Eming S.A., Wynn T.A., Martin P. Inflammation and metabolism in tissue repair and regeneration. Science, 2017, Vol. 356, pp. 1026-1030.

53. Fang C., Luo T., Lin, L. The correlational research among serum CXCL13 levels, circulating plasmablasts and memory B cells in patients with systemic lupus erythematosus: a STROBE-compliant article. Medicine, 2017, Vol. 96, no. 48, e8675. doi: 10.1097/MD.0000000000008675.

54. Feng D., Sangster-Guity N., Stone R., Korczeniewska J., Mancl M.E., Fitzgerald-Bocarsly P., Barnes B.J. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression. J. Immunol., 2010, Vol. 185, no. 10, pp. 6003-6012.

55. Fernando M.A., Stevens C.R., Walsh E.C., Jager F., Goyette P., Plenge R., Vyse T., Rioux J. Defining the role of the mhc in autoimmunity: a review and pooled analysis. PLoS Genet., Vol. 4, no. 4, e1000024. doi:10.1371/journal.pgen.1000024.

56. Firestein G.S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum., 1996, Vol. 39, no. 11, pp. 1781-1790.

57. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z., Punaro M., Baisch J., Guiducci C., Coffman R.L., Barrat F.J., Banchereau J., Pascual V. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med., 2011, Vol. 3, Iss. 73, 73ra20. doi: 10.1126/scitranslmed.3001201.

58. Gregersen P.K., Silver J., Winchester R.J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum., 1987, Vol. 30, no. 11, pp. 1205-1213.

59. Griffith J.W., Sokol C.L., Luster A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol., 2014, Vol. 32, pp. 659-702.

60. Gross H., Hennard C., Masouris I., Cassel C., Barth S. Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One, 2012, Vol. 7, no. 8, e42106. doi: 10.1371/journal.pone.0042106.

61. Gupta A.K., Joshi M.B., Philippova M., Erne P., Hasler P., Hahn S., Resink T.J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett., 2010, Vol. 584, pp. 3193-3197.

62. Hase K., Tani K., Shimizu T., Ohmoto Y., Matsushima K., Sone S. Increased CCR4 expression in active systemic Lupus erythematosus. J. Leukocyte Biol., 2001, Vol. 70, no. 5, pp. 749-755.

63. Helming L., Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol., 2009, Vol. 19, no. 5, pp. 514-522.

64. Hernandez-Molina G., Michel-Peregrina M., Hernandez-Ramirez D.F., Sanchez-Guerrero J., Llorente L. Chemokine saliva levels in patients with primary Sjogren’s syndrome, associated Sjogren’s syndrome, pre-clinical Sjogren’s syndrome and systemic autoimmune diseases. Rheumatology, 2011, Vol. 50, no. 7, pp. 1288-1292.

65. Herrmann M., Voll R.E., Zoller O.M., Hagenhofer M., Ponner B.B., Kalden J.R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.,1998, Vol. 41, no. 7, pp. 1241-1250.

66. Higashi-Kuwata N., Makino T., Inoue Y., Takeya M., Ihn H. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp. Dermatol., 2009, Vol. 18, no. 8, pp. 727-729.

67. Higgs B.W., Liu Z., White B., Zhu W., White W., Morehouse C., Brohawn P., Kiener P.A., Richman L., Fiorentino D., Greenberg S.A., Jallal B., Yao Y. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis., 2011, Vol. 70, no. 11, pp. 2029-2036.

68. Hjelmström P. Lymphoid neogenesis – de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leuk. Biol., 2001, Vol. 69, pp. 331-339.

69. Hjelmström P., Fjell J., Nakagawa T., Sacca R., Cuff C.A., Ruddle N.H. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol., 2000, Vol. 156, no. 4, pp. 1133-1138.

70. Horikawa S., Ishii Y., Hamashima T., Yamamoto S., Mori H., Fujimori T., Shen J., Inoue R., Nishizono H., Itoh H., Majima M., Abraham D., Miyawaki T., Sasahara M. PDGFRα plays a crucial role in connective tissue remodeling. Sci. Rep.., 2015, Vol. 5, 17948. doi: 10.1038/srep17948.

71. Humby F., Bombardieri M., Manzo A., Kelly S., Blades M.C., Kirkham B. Ectopic lymphoid structures support ongoing production of class- switched autoantibodies in rheumatoid synovium. PLoS Med., 2009, Vol. 6, e1. doi: 10.1371/journal.pmed.0060001.

72. Jara L.J., Medina G., Saavedra M.A. Autoimmune manifestations of infections. Curr. Opin. Rheumatol., 2018, Vol. 30, no. 46, pp. 373-379.

73. Jego G., Palucka A.K., Blanck J.P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity, 2003, Vol. 19, no. 2, pp. 225-234.

74. Jenkins M.K., Khoruts A., Ingulli E., Mueller D.L., McSorley S.J., Reinhardt R., Itano A., Pape A. In vivo activation of antigen- specific CD4 T cells. Annu. Rev. Immunol., 2001, Vol. 19, pp. 23-45.

75. Jesus A.A., Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med., 2014, Vol. 65, pp. 223-244.

76. Jorch S., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med., 2017, Vol. 23, no. 3, pp. 279-287.

77. Jurewicz М.М., Stern. L.G. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics, 2019, Vol. 71, no. 3, pp. 171-187.

78. Kang Y.M., Zhang X., Wagner U. G. Yang H., Beckenbaugh R.D., Kurtin P.J., Goronzy J.J., Weyand C.M. CD8 T Cells are required for the formation of ectopic germinal centers in rheumatoid synovitis. J. Exp. Med., 2002, Vol. 195, no. 10, pp. 1325-1336.

79. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, no. 178, 178ra40. doi: 10.1126/scitranslmed.3005580.

80. Kiselyov A., Balakin K.V., Tkachenko S.E. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, Vol. 16, pp. 83-107.

81. Klemperer P. The concept of collagen diseases. Am. J. Pathol, 1950, Vol. XXVI, no. 4, pp. 505-519.

82. Knecht H., Saremaslani P., Hedinger C. Immunohistological findings in Hashimoto’s thyroiditis, focal lymphocytic thyroiditis and thyroiditis de Quervain. Virchows Arch. A, 1981, Vol. 393, pp. 215-231.

83. Knight J.S., Carmona-Rivera C., Kaplan M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol., 2012, Vol. 3, 380. doi: 10.3389/fimmu.2012.00380.

84. Kobayashi K., Kaneda K., Kasama T. Immunopathogenesis of delayed-type hypersensitivity. Microsc. Res. Tech., 2001, Vol. 53, no. 4, pp. 241-245.

85. Koch A.E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum., 1998, Vol. 41, no. 6, pp. 951-962.

86. Koelink P.J., Overbeek. S.A., Braber S., Henricks P.A., Roda M.A., Verspaget H.W., Wolfkamp S.C., te Velde A.A., Jones C.W., Jackson P.L., Blalock J.E., Sparidans R.W., Kruijtzer J.A.W., Garssen J., Folkerts G., Kraneveld A.D. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut. 2014, Vol. 63, no. 4, pp. 578-587.

87. Kraan M.C., Haringman J.J., Post W.J., Versendaal J., Breedveld F.C., Tak P.P. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, Vol. 38, no. 11, pp. 1074-1080.

88. Krenn V., Souto-Carneiro M.M., Kim H.J., Berek C., Starostik P., Konig A. Histopathology and molecular pathology of synovial B-lymphocytes in rheumatoid arthritis. Histol. Histopathol., 2000, Vol. 15, pp. 791-798.

89. Kroenke M.A., Eto D., Locci M., Cho M., Davidson T., Haddad E.K., Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4T cell differentiation. J. Immunol., 2012, Vol. 188, no. 8, pp. 3734-3744.

90. Kuivaniemi H., Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 2019, Vol. 707, pp. 151-171.

91. Kunnumakkara A.B., Sailo B.L., Banik K., Harsha C., Prasad S., Gupta S.C., Bharti A.C., Aggarwal B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018, Vol. 16, 14. doi: 10.1186/s12967-018-1381-2.

92. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.-H., Su B., Nestle F.O., Zal T., Mellman I., Schröder J.-M., Liu Y.-J., Gillet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, Vol. 449, pp. 564-569.

93. Lau C.M., Broughton C., Tabor A.S., Akira S., Flavell R.A., Mamula M., Christensen S.R., Shlomchik M.J., Viglianti G.A., Rifkin I.R., Marshak-Rothstein A. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 2005, Vol. 202, no. 9, pp. 1171-1177.

94. Leadbetter E.A., Rifkin I.R., Hohlbaum A.M., Beaudette B.C., Shlomchik M.J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 2002, Vol. 416, pp. 603-607.

95. Liao A.P., Salajegheh M., Nazareno R., Kagan J.C., Jubin R.G. Greenberg S.A. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis., 2011, Vol. 70, no. 5, pp. 831-836.

96. Loo J., Spittle D.A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax, 2021, Vol. 76, no. 4, pp. 412-420.

97. Ma W-T., Gao F., Gu K., Chen D-K. The Role of Monocytes and Macrophages in autoimmune diseases: a comprehensive review. Front. Immunol., 2019, Vol. 10, 1140. doi: 10.3389/fimmu.2019.01140.

98. Malmstrom V., Venalis P., Albrecht I. T cells in myositis. Arthritis Res. Ther., 2012, Vol. 14, no. 6, 230. doi.org/10.1186/ar4116.

99. Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no. 11, pp. 549-555.

100. Manzo A., Bombardieri M., Humby F., Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol. Rev., 2010, Vol. 233, pp. 267-285.

101. Masters S.L., Simon A., Aksentijevich I., Kastner D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol., 2009, Vol. 27, pp. 621-668.

102. McNally A.K., Anderson J.M. Interleukin-4 induces foreign body giant cells from human monocytes/ macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol., 1995, Vol. 147, no. 5, pp. 1487-1499.

103. McNally A.K., Jones J.A., Macewan S.R., Colton E., Anderson J.M. Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. J. Biomed. Mater. Res., 2008, Vol. 86, no. 2, pp. 535-543.

104. Means T.K., Latz E., Hayashi F., Murali M.R., Golenbock D.T., Luster A.D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig., 2005, Vol. 115, no. 2, pp. 407-417.

105. Miga A., Masters S., Gonzalez M., Noelle R.J. The role of CD40-CD154 interactions in the regulation of cell mediated immunity. Immunol. Investig., 2000, Vol. 29, no 2, pp. 111-114.

106. Miyabe Y., Lian J., Miyabe C., Luster A.D. Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nat. Rev. Rheumatol., 2019, Vol. 15, pp. 731-746.

107. Moghaddas F., Masters S.L. Monogenic autoinflammatory diseases: cytokinopathies. Cytokine, 2015, Vol. 74, no. 2, pp. 237-246.

108. Moore B.B., Keane M.P., Addison C.L., Arenberg D.A., Strieter R.M. CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J. Invest. Med., 1998, Vol. 46, no. 4, pp. 113-120.

109. Murphy G., Knauper V., Atkinson S., Butler G., English W., Hutton M., Stracke J., Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res., 2002, Vol. 4, Suppl. 3, pp. S39-S49.

110. Murshid A., Gong J., Calderwood S.K. The role of heat shock proteins in antigen cross presentation. Front. Immunol., 2012, Vol. 3, 63. doi: 10.3389/fimmu.2012.00063.

111. Nakhasi H.L., Ramanujam M., Atreya C.D., Hobman T.C., Lee N. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch. Virol., 2001, Vol. 146, pp. 1-14.

112. Nanki T., Hayashida K., El-Gabalawy H., Suson S., Shi K., Girschick H.J., Yavus S., Lipsky P.E. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J. Immunol., 2000, Vol. 165, no. 11, pp. 6590-6598.

113. Nanki T., Shimaoka T., Hayashida K., Taniguchi K., Yonehara S., Miyasaka N. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum., 2005, Vol. 52, no. 10, pp. 3004-3014.

114. Ohtani H. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: Similarity to antigen-presenting cells. Pathol. Int., 2013, Vol. 63, pp. 85-93.

115. Orr C., Najm A., Biniecka M., McGarry T., Ng C.T., Young F., Fearon U., Veale D.J. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis. Arthr. Rheumatol., 2017, Vol. 69, no. 11, pp. 2114-2123.

116. Pagan A.J., Ramakrishnan L. The Formation and Function of Granulomas. Annu. Rev. Immunol., 2018, Vol. 36, pp. 639-665.

117. Page C., François C., Goëb V., Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J. Clin. Virol., 2015, Vol. 72, pp. 69-74.

118. Pap T., Shigeyama Y., Kuchen S., Fernihough J.K., Simmen B., Gay R.E. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum., 2000, Vol. 43, no. 6, pp. 1226-1232.

119. Patel D.D., Zachariah J.P., Whichard L.P. CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin. Immunol., 2001, Vol. 98, no. 1, pp. 39-45.

120. Pisetsky D.S., Erlandsson-Harris H., Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res. Ther., 2008, Vol. 10, 209. doi:10.1186/ar2440.

121. Pitzalis C., Kelly S., Humby F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol., 2013, Vol. 25, no. 3, pp. 334-344.

122. Randen I., Mellbye O.J., Forre O., Natvig J.B. The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand. J. Immunol., 1995, Vol. 41, no. 5, pp. 481-486.

123. Raychaudhuri S., Sandor C., Stahl E.A., Freudenberg J., Lee H.S., Jia X., Alfredsson L., Padyukov L., Klareskog L., Worthington J., Siminovitch K.A., Bae S.-C., Plenge R.M., Gregersen P.K., de Bakker P.I. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet., 2012, Vol. 44, no. 3, pp. 291-296.

124. Reglero-Real N., Colom B., Bodkin J.V., Nourshargh S. Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler. Thromb. Vasc. Biol., 2016, Vol. 36, no. 10, pp. 2048-2057.

125. Rizzo C., Grasso G., Castaniti G., Ciccia F., Guggino G. Primary sjogren syndrome: focus on innate immune cells and inflammation. Vaccines, 2020, Vol. 8, no. 2, pp. 1-23.

126. Rock K.L., Kono H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis., 2008, Vol. 3, pp. 99-126.

127. Rogers G.L., Shirley J.L., Zolotukhin I., Kumar S.P., Sherman A., Perrin G.Q., Hoffman B.E., Srivastava A., Basner-Tschakarjan E., Wallet M.A., Terhorst C., Biswas M., Herzog R.W. Plasmacytoid and conventional dendritic cells cooperate in cross-priming AAV capsid-specific CD8+ T cells. Blood, 2017, Vol. 129, no. 24, pp. 3184-3195.

128. Romero V., Fert-Bober J., Nigrovic P.A., Darrah E., Haque U.J., Lee D.M., van Eyk J., Rosen A., Andrate F. Immune-mediated pore- forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, 209ra150. doi: 10.1126/scitranslmed.3006869.

129. Rosen A., Casciola-Rosen L. Autoantigens as partners in initiation and propagation of autoimmune rheumatic diseases. Annu. Rev. Immunol., 2016, Vol. 34, pp. 395-420.

130. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, Vol. 18, pp. 217-242.

131. Rot A., von Andrian U.H. Chemokines in innate and adaptive host defense: Basic Chemokinese Grammar for Immune Cells. Annu. Rev. Immunol., 2004, Vol. 22, pp. 891-928.

132. Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren-Herlenius M. Expression of the B Cell-attracting chemokine CXCL13 in the target organ and autoantibody production ectopic lymphoid tissue in the chronic inflammatory disease SjoÈgren’s syndrome. Scand. J. Immunol., 2002, Vol. 55, pp. 336-342.

133. Sarelius I.Y., Glading A.J. Control of vascular permeability by adhesion molecules. Tissue Barriers, 2015 Vol. 3, no. 1-2, e985954. doi: 10.4161/21688370.2014.985954.

134. Sato N., Beitz J.G., Kato J., Yamamoto M., Clark J.W., Calabresi P., Frackelton A.R. Jr. Platelet- derived growth factor indirectly stimulates angiogenesis in vitro. Am. J. Pathol., 1993, Vol. 142, no. 4, pp. 1119-1130.

135. Scally S.W., Petersen J., Law S.C., Dudek N.L., Nel H.J., Loh K.L., Wijeyewickrema L.C., Eckle S.B.G., van Heemst J., Pike R.N., McCluskey J., Toes R.E., La Gruta N.L., Purcell A.W., Reid H.H., Thomas R., Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med., 2013, Vol. 210, no. 12, pp. 2569-2582.

136. Scheel T., Gursche A., Zacher J., Haupl T., Berek C. V-region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum., 2011, Vol. 63, no. 1, pp. 63-72.

137. Schellekens G.A., de Jong B.A., van den Hoogen F.H., van de Putte L.B., van Venrooij W.J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig., 1998, Vol. 101, no. 1, pp. 273-281.

138. Schonbeck U., Brandt E., Petersen F., Flad H.D., Loppnow H., IL-8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol., 1995, Vol. 154, no. 5, pp. 2375-2383.

139. Segura E., Amigorena S. Cross-presentation by human dendritic cell subsets. Immunol. Lett., 2014, Vol. 158, no. 1-2, pp. 73-78. .

140. Sharma D., Kanneganti T.D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, Vol. 213, no. 6, pp. 617-629.

141. Shikama Y., Kobayashi K., Kasahara K., Kara S. Granuloma formation by artificial microparticles in vitro. Macrophages and monokines play a critical role in granuloma formation. Am. J. Pathol., 1989, Vol. 134, no. 6, pp. 1189-1199.

142. Silver J., Goyert S.M. Epitopes are the functional units of Ia molecules and form the molecular basis for disease susceptibility, human class II histocompatibility antigens. In: Ferrone S., Solheim B.G., Moller E., editors. HLA class II antigens: a comprehensive review of structure and function. Berlin, Springer. 1985, pp. 32-48.

143. Skotnicki J.S., Zask A., Nelson F.C., Albright J.D., Levin J.I. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann. N. Y. Acad. Sci., 1999, 30: 878, pp. 61-72.

144. Sneller М.С. Granuloma formation, implications for the pathogenesis of vasculitis. Cleve. Clin. J. Med., 2002, Vol. 69, Suppl. 2, pp. SII40-SII43.

145. Sottile J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta, 2004, Vol. 1654, pp. 13-22.

146. Spolski R., Leonard W.J. Interleukin-21: basic biology and implications for cancer and autoimmunity. Ann. Rev. Immunol., 2008, Vol. 26, pp. 57-79.

147. Steed A.L., Stappenbeck T.S. Role of viruses and bacteria-virus interactions in autoimmunity. Curr. Opin. Immunol., 2014, Vol. 31, pp. 102-107.

148. Stone R.C., Feng D., Deng J., Singh S., Yang L., Fitzgerald-Bocarsly P., Eloranta. M., Ronnblom L., Barnes B.J. Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum., 2012, Vol. 64, no. 3, pp. 788-798.

149. Stott D.I., Hiepe F., Hummel M., Steinhauser G., Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with SjoÈ gren’s syndrome. J. Clin. Invest., 1998, Vol. 102, pp. 938-946.

150. Strieter R.M., Polverini P.J., Kunkel S.L., Arenberg D.A., Burdick M.D., Kasper J., Dzuiba J., van Damme J., Walz A., Marriott D., Chan S.-Y., Roczniak S., Shanafelt A.B. The functional role of the ELR motif in CXC chemokinemediated angiogenesis. J. Biol. Chem., 1995, Vol. 270, no. 45, pp. 27348-27357.

151. Suzuki F., Kubota T., Miyazaki Y., Ishikawa K., Ebisawa M., Hirohata S., Ogura T., Mizusawa H., Imai T., Miyasaka N., Nanki T. Serum level of soluble CX3CL1/ fractalkine is elevated in patients with polymyositis and dermatomyositis, which is correlated with disease activity. Arthritis Res. Ther., 2012, Vol. 14, no. 2, R48. doi: 10.1186/ar3761.

152. Swiecki M., Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol., 2015, Vol. 15, no. 8, pp. 471-485.

153. Szekanecz Z., Halloran M.M., Haskell C.J. Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci. Glycotechnol., 1999, Vol. 58, 73.

154. Szekanecz Z., Koch A.E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol., 2007, Vol. 19, no. 3, pp. 289-295.

155. Szekanecz Z., Koch A.E., Angiogenesis in rheumatoid arthritis. In: Rubanyi G.M., ed. Angiogenesis in health and disease. Marcel Dekker, New York, Basel, 2000, pp 429-450.

156. Szekanecz Z., Koch A.E. Chemokines and angiogenesis. Curr. Opin. Rheumatol., 2001, Vol. 13, no. 3, pp. 202-208.

157. Szekanecz Z., Szegedi G., Koch A.E. Angiogenesis in rheumatoid arthritis. J. Invest. Med., 1998, Vol. 46, no. 2, pp. 27-41.

158. Taniguchi N., Kawahara K., Yone K., Hashiguchi T., Yamakuchi M., Goto M., Inoue K., Yamada S., Ijiri K., Matsunaga S., Nakajima T., Komiya S., Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum., 2003, Vol. 48, no. 4, pp. 971-981.

159. Tengnér P., Halse A-K., Haga H-J., Jonsson R., Wahren-Herlenius M. Detection of anti-Ro/SSA and anti-La/SSB auto-antibody-producing cells in salivary glands from patients with Sjögren’s syndrome. Arthritis Rheum., 1998, Vol. 41, no. 12, pp. 2238-2248.

160. Thurlings R.M., Wijbrandts C.A., Mebius R.E., Cantaert T., Dinant H.J., Teneke C.T., der Pouw-Kraan M., Verweij C.L., Baeten D., Tak P.P. Synovial Lymphoid Neogenesis Does Not Define a Specific Clinical Rheumatoid Arthritis Phenotype. Arthritis Rheum., 2008, Vol. 58, no. 6, pp. 1582-1589.

161. Turunen S., Huhtakangas J., Nousiainen T., Valkealahti M., Melkko J., Risteli J., Lehenkari P. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Res. Ther., 2016, Vol. 18, 239. doi 10.1186/s13075-016-1140-9.

162. Ulfgren A.K., Grundtman C., Borg K., Alexanderson H., Andersson U., Harris H.E. Lundberg I.E. Downregulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Arthritis Rheum., 2004, Vol. 50, no. 5., pp. 1586-1594.

163. van der Aa E., van Montfoort N., Woltman A.M. BDCA3+CLEC9A+ human dendritic cell function and development. Semin. Cell Dev. Biol., 2015, Vol. 41, pp. 39-48.

164. van der Woude D., Lie B.A., Lundstrom E., Balsa A., Feitsma A.L., Houwing-Duistermaat J.J., Verduijn W., Nordang G.B.N., Alfredsson L., Klareskog L., Pascual-Salcedo D., Gonzalez-Gay M.A., Lopez-Nevot M.A., Valero F., Roep B.O., Huizinga T.W.J., Kvien T.K., Martín J., Padyukov L., de Vries R.R.P., Toes R.E. Protection against anticitrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA- DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum., 2010, Vol. 62, no. 5, pp. 1236-1245.

165. Veale D.J., Fearon U. Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract. Res. Clin. Rheumatol., 2006, Vol. 20, no. 5, pp. 941-947.

166. Vogel D.Y., Glim J.E., Stavenuiter A.W., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology, 2014, Vol. 219, no. 9, pp. 695-703.

167. Voll R.E., Urbonaviciute V., Herrmann M., Kalden J.R. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr. Med. Assoc. J., 2008, no. 10, pp. 26-28.

168. Williams G.T., Williams W.J. Granulomatous inflammation – a review. J. Clin. Pathol., 1983, Vol. 3, no. 7, pp. 723-733.

169. Wu L., Fan J., Matsumoto S., Watanabe T. Induction and regulation of matrix metalloproteinase-12 by cytokines and CD40 signaling in monocyte/macrophages. Biochem. Biophys. Res. Commun., 2000, Vol. 269, no. 3, pp. 808-815.

170. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, Vol. 44, no. 3, 450-462. doi: 10.1016/j.immuni.2016.02.015.

171. Yamanaka H. TNF as a target of inflammation in rheumatoid arthritis. Endocr. Metab. Immune, 2015, Vol. 15, pp. 129-134.

172. Yang B.G., Tanaka T., Jang M.H., Bai Z., Hayasaka H., Miyasaka M. Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking. J. Immunol., 2007, Vol. 179, no. 7, pp. 4376-4382.

173. Young C.L., Adamson T.C., Vaughan J.H., Fox R.I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum., 1984, Vol. 27, no. 1, pp. 32-39.

174. Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu L. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 2016, Vol. 21, no. 1, pp. 96-109.


Дополнительные файлы

Рецензия

Для цитирования:


Саидов М.З. Патогенетическое значение клеточного инфильтрата при иммуновоспалительных ревматических заболеваниях. Медицинская иммунология. 2021;23(6):1239-1270. https://doi.org/10.15789/1563-0625-PVO-2386

For citation:


Saidov M.Z. Pathogenetic value of cell infiltrate in immunoinflammatory rheumatic diseases. Medical Immunology (Russia). 2021;23(6):1239-1270. (In Russ.) https://doi.org/10.15789/1563-0625-PVO-2386

Просмотров: 110


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)