Preview

Medical Immunology (Russia)

Advanced search

Impact of transfusion of blood components on the recipient immune system

https://doi.org/10.15789/10.15789/1563-0625-IOT-2372

Abstract

Transfusions of blood provide essential therapeutic measures in a number of pathological conditions. However, when carrying out blood component therapy, it is important to consider probability of post-transfusion complications. Most of them are immune-mediated side effects. The unfavorable consequences of blood transfusions can manifest at long-range time periods, and pathogenesis of these phenomena may be associated not only with the presence of alloantibodies. They may be caused by alloimmunization to HLA antigens, leukocyte factors, including cytokines, products of leukocyte degranulation, as well as storage-related erythrocyte damage («storage lesion»), immunomodulatory properties of extracellular vesicles or microparticles derived from blood components, and other factors. Despite significant number of publications on this issue, a lot of unresolved issues still remain, concerning transfusion-related effects of blood components on the immune system of recipients. The review article provides the results of current studies in this area. We present and discuss the results of current studies and the features of transfusion-mediated immunomodulation (TRIM) revealed over recent years, when transfusing different blood components. The role of plasma factors, microparticles, platelets and erythrocytes, HLA sensitization and microchimerism in the development of TRIM is highlighted, the data on occurrence and clinical features of TRIM in perioperative period are presented. A separate section of the review provides information about recent clinical studies, devoted to the issues of TRIM in different clinical cohorts, including newborns, patients with malignant neoplasms, immunocompromised patients after heart and vascular surgery. The data on TRIM incidence in the patients with exhausted immune system due to previous disease or treatment, severe comorbidity, extensive surgical thoracic/abdominal intervention and artificial circulation are also in scope. As based on the studies performed, the role of distinct measures, e.g., washing of erythrocyte concentrates, leukodepletion, and gamma irradiation are discussed in view of potential TRIM prevention. The results of published research do not allow us to draw definite conclusions about the effects of blood component transfusion on the immune system of recipients with respect to differences between the studied groups of patients, characteristics of the studied disorders and clinical situations, diversity of hemocomponents, as well as varying standards of transfusion therapy adopted in different countries. However, the systematic literature review may provide some guidance in transfusion-mediated immune modulation.

About the Authors

T. V. Glazanova
Russian Research Institute of Haematology and Transfusiology, Federal Medical and Bilogical Agency
Russian Federation

Glazanova Tatyana V. - PhD, MD (Medicine), Head, Laboratory of Immunohaematology.

191024, St. Petersburg, 2nd Sovetskaya, 16. Phone: 7 (921) 997-51-31


Competing Interests:

no



E. R. Shilova
Russian Research Institute of Haematology and Transfusiology, Federal Medical and Bilogical Agency
Russian Federation

PhD (Medicine), Associate Professor, Senior Research Associate, Laboratory of Immunohaematology.

St. Petersburg


Competing Interests:

no



A. V. Chechetkin
Russian Research Institute of Haematology and Transfusiology, Federal Medical and Bilogical Agency

PhD, MD (Medicine), Professor, Deputy Director, Russian Research Institute of Haematology and Transfusiology.

St. Petersburg


Competing Interests:

no



L. N. Bubnova
Russian Research Institute of Haematology and Transfusiology, Federal Medical and Bilogical Agency; Russian Research Institute of Haematology and Transfusiology
Russian Federation

PhD, MD (Medicine), Professor, Honored Researcher of Russia, Head, Russian Center of Tissues Typing, RRIof Haematology and Transfusiology, Federal Medical and Bilogical Agency; Professor, Department of Immunology, First St. Petersburg State I. Pavlov MU.

St. Petersburg


Competing Interests:

no



References

1. Eikhler O.V., Chechetkin A.V., Adzhigitova E.V., Danilchenko V.V., Mineeva N.V., Soldatenkov V.E., Krobinets I.I. Characteristics of complications occurring after transfusion of donor blood and its components, in medical esteblishments of the Russian Federation in 2018. Transfuziologiya = Transfusiology, 2019, Vol. 20, no. 4, pp. 301-309. (In Russ.)

2. Aatonen M., Gronholm M., Siljander P. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin. Thromb. Hemost., 2012, Vol. 38, no. 1, pp. 102-113.

3. Amato A, Pescatori M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst Rev., 2006, Vol. 1, CD005033. doi: 10.1002/14651858.CD005033.pub2.

4. Almizraq R., Seghatchian J., Acker J. Extracellular vesicles in transfusion-related immunomodulation and the role of blood component manufacturing. Transfus.Apher. Sci., 2016, Vol. 55, no. 3, pp. 281-291.

5. Almizraq R., Kipkeu B., Acker J. Platelet vesicles are potent inflammatory mediators in red blood cell products and washing reduces the inflammatory phenotype. Transfusion, 2019, Vol. 60, no. 2, pp. 378-390.

6. Apelseth T., Hervig T., Wentzel-Larsen T., Petersen K., Reikvam H, Bruserud O. A prospective observational study of the effect of platelet transfusions on levels of platelet-derived cytokines, chemokines and interleukins in acute leukaemia patients with severe chemotherapy-induced cytopenia. Eur. Cytokine Netw., 2011, Vol. 22, no. 1, pp. 52-62.

7. Arraud N., Linares R., Tan S., Gounou C., Pasquet J.-M., Mornet S., Brisson A.R. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost., 2014, Vol. 12, no. 5, pp. 614-627.

8. Atzil S., Arad M., Glasner A., Abiri N., Avraham R., Greenfeld K., Rosenne E., Beilin B., Ben-Eliyahu S. Blood transfusion promotes cancer progression: a critical role for aged erythrocytes. Anesthesiology, 2008, Vol. 109, no. 6, pp. 989-997.

9. Baek J. H., Yalamanoglu A., Gao Y., Guenster R., Spahn D.R., Schaer D.J., Buehler P.W. Iron accelerates hemoglobin oxidation increasing mortality in vascular diseased guinea pigs following transfusion of stored blood. JCI Insight, 2017, Vol. 2, e93577. doi: 10.1172/jci.insight.93577.

10. Baumgartner J.М., Nydam T.L., Clarke J.H., Banerjee A., Silliman C.C., McCarter M.D. Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J. Interferon Cytokine Res., 2009, Vol. 29, no. 6, pp. 333-338.

11. Baumgartner J., Silliman C.C., Moore E.E., Banerjee A., McCarter M. Stored red blood cell transfusion induces regulatory T cells. J. Am. Coll. Surg., 2009, Vol. 208, no. 1, pp. 110-119.

12. Belizaire R., Prakash P., Richter J., Robinson B.R., Edwards M.J., Caldwell C., Lentsch A., Pritts T.A. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J. Am. Coll. Surg., 2012, Vol. 214, no. 4, pp. 648-655.

13. Blajchman M. Immunomodulation and blood transfusion. Am. J. Ther., 2002, Vol. 9, no. 5, pp. 389-395.

14. Bury T., Corhay J., Radermecker M. Histamine-induced inhibition of neutrophil chemotaxis and T-lymphocyte proliferation in man. Allergy, 1992, Vol. 47, no. 6, pp. 624-629.

15. Caramalho I., Lopes-Carvalho T., Ostler D., Zelenay S., Haury M., Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med., 2003, Vol. 197, no. 4, pp. 403-411.

16. Chen X., Yang J., Hu S., Nie H., Mao G., Chen H. Increased expression of CD86 and reduced production of IL-12 and IL-10 by monocyte-derived dendritic cells from allergic asthmatics and their effects on Th1- and Th2-type cytokine balance. Respiration, 2006, Vol. 73, no. 1, pp. 34-40.

17. Coutant F., Perrin-Cocon L., Agaugue S., Delair T., André P., Lotteau. V. Mature dendritic cell generation promoted by lysophosphatidylcholine. J. Immunol., 2002, Vol. 169, no. 4, pp. 1688-1695.

18. Cross J., Bradbury R., Fulford A., Jallow A., Wegmüller R., Prentice A., Cerami C. Oral iron acutely elevates bacterial growth in human serum. Sci. Rep., 2015, no. 5, 16670. doi: 10.1038/srep16670. doi: 10.1038/srep16670.

19. Danesh A., Inglis H., Jackman R., WuS. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood, 2013, Vol. 123, no. 5, pp. 687-696.

20. Delobel J., Prudent M., Rubin O., CrettazD., TissotJ-D., Lion N. Subcellular fractionation of stored red blood cells reveals a compartmentbased protein carbonylation evolution. J. Proteom., 2012, Vol. 76, Spec. no., pp. 181-193.

21. Deeb A., Aquina C.T., Monson J., Blumberg N., Becerra A., Fleming F. Allogeneic leukocyte-reduced red blood cell transfusion is associated with postoperative infectious complications and cancer recurrence after colon cancer resection. Dig Surg., 2020, Vol. 37, no. 2, pp. 163-170.

22. Dey-Hazra E., Hertel B., Kirsch T., Woywodt A., Lovric S., Haller H., Haubitz M., Erdbruegger U. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc. Health Risk Manag., 2010, Vol. 6, no. 6, pp. 1125-1133.

23. Dzik S., Murphy M. Emerging research in transfusion medicine: what to expect in 2020. Transfus. Med. Rev., 2020, Vol. 34, no. 1, pp. 1-4.

24. Fernandez-Messina L., Gutierrez-Vazquez C., Rivas-Garcia E., Sánchez-Madri dF., de la Fuente H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol. Cell, 2015, Vol. 107, no. 3, pp. 61-77.

25. Fox L., Cox D., Lockridge J., Wang X., Chen X., Scharf L., Trott D., Ndonye R., Veerapen N., Besra G., Howell A., Cook M., Adams E., Hildebrand W., Gumperz J. Recognition of lysophospholipids by human natural killer T lymphocytes. PLoS Biol., 2009, Vol. 7, no. 10, e1000228. doi: 10.1371/journal.pbio.1000228.

26. Ghio M., Contini P., Ubezio G., Ansaldi F., Setti M., Tripodi G. Blood transfusions with high levels of contaminating soluble HLA-I correlate with levels of soluble CD8 in recipients’ plasma; a new control factor in soluble HLA-I-mediated transfusion-modulated immunomodulation? Blood Transfus., 2014, Vol. 12, no. 1, pp. 105-108.

27. Ghio M., Contini P., Negrini S., Mazzei C., Zocchi M.R., Poggi A. Down regulation of human natural killer cell-mediated cytolysis induced by blood transfusion: role of transforming growth factor-b (1), soluble Fas ligand, and soluble Class I human leukocyte antigen. Transfusion, 2011, Vol. 51, no. 7, pp. 1567-1573.

28. Halpin A., Nahirniak S.,Campbell P., Urschel S., Kim D., West L., Pidorochynski T., Buchholz H., Conway J. HLA alloimmunization following ventricular assist device support across the age spectrum. Transplantation, 2019, Vol. 103, no. 12, pp. 2715-2724.

29. Hassani H., Khoshdel H., Sharifzadeh S.R., Heydari M.F., Alizadeh S., Aghideh A.N. TNF-α and TGF-β level after intraoperative allogeneic red blood cell transfusion in orthopedic operation patients. Turkish J. Med. Scien., 2017, Vol. 47, no. 6, pp. 1813-1818.

30. Hirani R., Balogh Z., Lott N., Hsu J., Irving D. Leukodepleted blood components do not remove the potential for long-term transfusion-associated microchimerism in australian major trauma patients. Chimerism, 2014, Vol. 5, no. 3, pp. 86-93.

31. Hirani R., Dean M., Balogh Z., Lott N., Seggie J., Hsu J., Taggart S., Maitz P., Survela L., Joseph A., Gillett M., Irving D. Donor white blood cell survival and cytokine profiles following red blood cell transfusion in Australian major trauma patients. Mol. Immunol., 2018, Vol. 103, pp. 229-234.

32. Holmes C., Levis J., Ornstein D. Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis. Clin. Exp. Metastasis, 2009, Vol. 26, no. 7, pp. 653-661.

33. Hood M., Skaar E. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol., 2012, Vol. 10, no. 8, pp. 525-537.

34. Hunsicker O., Gericke S., Graw J., Krannich A., Boemke W., Meyer O., Braicu I., Spies C., Sehouli J., Pruß A., Feldheiser A. Transfusion of red blood cells does not impact progression-free and overall survival after surgery for ovarian cancer. Transfusion, 2019, Vol. 59, no. 12, pp. 3589-3600.

35. Jacobi K., Wanke C., Jacobi A., Weisbach V., Hemmerling T. Determination of eicosanoid and cytokine production in salvaged blood, stored red blood cell concentrates, and whole blood. J. Clin. Anesth., 2000, Vol. 12, no. 9, pp. 94-99.

36. Jiao C., Zheng L. Blood transfusion-related immunomodulation in patients with major obstetric haemorrhage. Vox Sanguinis, 2019, Vol. 114, no. 8, pp. 861-868.

37. Jin Y., Damaj B., Maghazachi A. Human resting CD162, CD16+ and IL-2-, IL-12-, IL-15- or IFN-alphaactivated natural killer cells differentially respond to sphingosylphosphorylcholine, lysophosphatidylcholine and platelet-activating factor. Eur. J. Immunol., 2005, Vol. 35, no. 9, pp. 2699-2708.

38. Kanter J., Khan S., Kelher M., Gore L., Silliman C. Oncogenic and angiogenic growth factors accumulate during routine storage of apheresis platelet concentrates. Clin. Cancer Res., 2008, Vol. 14, no. 12, pp. 3942-3947.

39. Karam O., Tucci M., Toledano B., Robitaille N., Cousineau J., Thibault L., Lacroix J., Le Deist F. Length of storage and in vitro immunomodulation induced by prestorage leukoreduced red blood cells. Transfusion, 2009, Vol. 49, no. 11, pp. 2326-2334.

40. Keir A., McPhee A., Andersen C., Stark M. Plasma cytokines and markers of endothelial activation increase after packed red blood cell transfusion in the preterm infant. Pediatr. Res., 2013, Vol. 73, no. 1, pp. 75-79.

41. Ki K.K., Johnson L., Faddy H.M., Flower R. L. Marks D.C., Dean M.M. Immunomodulatory effect of cryopreserved platelets: altered BDCA31 dendritic cell maturation and activation in vitro. Transfusion, 2017, Vol. 57, no. 12, pp. 2878-2887.

42. Lamiaa M., Hala Y., Hala A., Hawary R., Selim A., Aly S., Nada M., Aly H. Effect of packed red blood cell transfusion on IL-8 and sICAM-1 in premature neonates at different postnatal ages. Pediatr. Neonatol., 2019, Vol. 60, no. 5, pp. 537-542.

43. Lange M.M., van Hilten J.A., van de Watering L.M., Bijnen B.A., Roumen R.M., Putter H., Brand A., van de Velde C.J. Leucocyte depletion of perioperative blood transfusion does not affect long-term survival and recurrence in patients with gastrointestinal cancer. Br. J .Surg., 2009, Vol. 96, no. 7, pp. 734-740.

44. Lapierre V., Aupérin A., Robinet E., Ferrand C., Oubouzar N., Tramalloni D., Saas P., Debaene B., Lasser P., Tiberghien P. Immune modulation and microchimerism after unmodified versus leukoreduced allogeneic red blood cell transfusion in cancer patients: results of a randomized study. Transfusion, 2007, Vol. 47, no. 9, pp. 1691-1699.

45. Luo L., Wang D., Chen M., Li M. Effects of reinfusion of the remaining blood filtered by leukocyte depletion filter on postoperative cellar immune function after cardiopulmonary bypass. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, Vol. 31, no. 8, pp. 989-993.

46. Mathivanan S., Ji H., Simpson R. Exosomes: extracellular organelles important in intercellular communication. J. Proteom., 2010, Vol. 73, no. 10, pp. 1907-1920.

47. Matsubayashi H., Weidner J., Miraglia C., McIntyre J. Platelet membrane early activation markers during prolonged storage. Thromb. Res., 1999, Vol. 93, no. 4, pp. 151-160.

48. Mittal S., Cho K., Ishido S., Roche P.A. Interleukin 10 (IL-10)-mediated Immunosuppression: MARCH-I induction regulates antigen presentation by macrophages but not dendritic cells. J. Biol. Chem., 2015, Vol. 290, no. 45, pp. 27158-27167.

49. Mulligan J., Rosenzweig S., Young M. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J. Immunother., 2010, Vol. 33, no. 2, pp. 126-135.

50. Muszynski J., Bale J., Nateri J., Nicol K. Supernatants from stored red blood cell (RBC) units, but not RBCderived microvesicles, suppress monocyte function in vitro. Transfusion, 2015, Vol. 55, no. 8, pp. 1937-1945.

51. Muszynski J., Spinella P., Cholette J. Acker J., Hall M., Juffermans N., Kelly D., Blumberg N., Nicol K., Liedel J., Doctor A., Remy K., Tucci M., Lacroix J., Norris P. Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion, 2017, Vol. 57, no. 1, pp. 195-206.

52. Nagura Y., Tsuno N., Tanaka M., Matsuhashi M., Takahashi K. The effect of prestorage whole-blood leukocyte reduction on cytokines/chemokines levels in autologous CPDA-1 whole blood. Transfus. Apher. Sci., 2013, Vol. 49, no. 2, pp. 223-230.

53. Nelson K.A., Aldea G.S., Warner P., Latchman Y., Gunasekera D., Tamir A., Gernsheimer T., Bolgiano D., Slichter S.J. Transfusion-related immunomodulation: gamma irradiation alters the effects of leukoreduction on alloimmunization. Transfusion, 2019, Vol. 59, no. 11, pp. 3396-3404.

54. Olofsson K.E., Andersson L., Nilsson J., Bjorkbacka H. Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages. Biochem. Biophys. Res. Commun., 2008, Vol. 370, no. 2, pp. 348-352.

55. Ozment C.P., Mamo L.B., Campbell M.L., Lokhnygina Y., Ghio A., Turi J. Transfusion-related biologic effects and free hemoglobin, heme, and iron. Transfusion, 2013, Vol. 53, no. 4, pp. 732-740.

56. Patel M.B., Proctor K.G., Majetschak M. Extracellular ubiquitin increases in packed red blood cell units during storage. J. Surg. Res., 2006, Vol. 135, no. 2. pp. 226-232.

57. Petri B., Phillipson M., Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J. Immunol., 2008, Vol. 180, no. 10, pp. 6439-6436.

58. Remy K., Natanson C., Klein H.G. The influence of the storage lesion(s) on pediatric red cell transfusion. Curr. Opin. Pediatr., 2015, Vol. 27, no. 3, pp. 277-285.

59. Ren Y., Lin C., Li Z., Chen X.Y. Up-regulation of macrophage migration inhibitory factor in infants with acute neonatal necrotizing enterocolitis. Histopathology, 2005, Vol. 46, no. 6, pp. 659-667.

60. Robinson D. The role of regulatory T lymphocytes in asthma pathogenesis. Curr. Allergy Asthma Rep., 2005, Vol. 5, no. 2, pp. 136-141.

61. Saas P., Angelot F., Bardiaux L., Seillès E., Garnache-Ottou F., Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: a pro-inflammatory or an anti-inflammatory effect? Transfus. Clin. Biol., 2012, Vol. 19, no. 3, pp. 90-97.

62. Sadallah S., Eken C., Martin P., Schifferli J. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J. Immunol., 2011, Vol. 186, no. 11, pp. 6543-6552

63. Saris A., Kerkhoffs J.L., Norris P.J., van Ham M., Brinke A., Brand A., van der Meer P. F., Zwaginga J.J. The role of pathogen-reduced platelet transfusions on HLA alloimmunization in hemato-oncological patients. Transfusion, 2019, Vol. 59, no. 2, pp. 470-481.

64. Silliman C., Clay K., Thurman G., Johnson C., Ambruso D. Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J. Lab. Clin. Med., 1994, Vol. 124, no. 5, pp. 684-694.

65. Seghatchian J. Platelet storage lesion: an update on the impact of various leukoreduction processes on the biological response modifiers. Transfus. Apher. Sci., 2006, Vol. 34, no. 1, pp. 125-130.

66. Soontrapa K., Honda T., Sakata D., Yao C., Hirata T., Hori S., Matsuoka T., Kita Y., Shimizu T., Kabashima K., Narumiya S. Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proc. Natl. Acad. Sci. USA, 2011, Vol. 108, no. 16, pp. 6668-6673.

67. Suksompong S., Tassaneetrithep B., Ariyawatkul T., Sirivanasandha B. Allogeneic red cell transfusion and its influence on relevant humoral and cellular immunological parameters: A prospective observational trial. Eur. J. Anaesthesiol,, 2019, Vol. 36, no. 11, pp. 814-824.

68. Tetta C., Ghigo E., Silengo L., Deregibus M.C., Camussi G. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine, 2013, Vol. 44, no. 1, pp. 11-19.

69. Vlaar A., Hofstra J., Kulik W., van Lenthe H., Nieuwland R., Schultz M., Levi M., Roelofs J., Tool A., de Korte D., Juffermans N. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model. Blood, 2010, Vol. 116, no. 8, pp. 1360-1368.

70. Vallion R., Bonnefoy F., Daoui A.Vieille L., Tiberghien P., Saas P., Perruche S. Transforming growth factor-b released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation. Transfusion, 2015, Vol. 55, no. 7, pp. 1721-1735.

71. van Hilten J., van de Watering L., van Bockel J., van de Velde C., Kievit J., Brand R., van Den Hout W., Geelkerken R., Roumen R., Wesselink R., Koopman-van Gemert A., Koning J., Brand A. Effects of transfusion with red cells filtered to remove leucocytes: randomised controlled trial in patients undergoing major surgery. BMJ, 2004, Vol. 328, no. 451, 1281. doi: 10.1136/bmj.38103.735266.55.

72. Walker E., Walker S. Effects of iron overload on the immune system. Ann. Clin. Lab. Sci., 2000, Vol. 30, no. 4, pp.354-365.

73. Wang D., Cortes-Puch I., Sun J., Solomon S., Kanias T., Remy K., Feng J., Alimchandani M., Quezado M., Helms C., Perlegas A., Gladwin M., Kim-Shapiro D., Klein H., Natanson H. Transfusion of older stored blood worsens outcomes in canines depending on the presence and severity of pneumonia. Transfusion, 2014, Vol. 54, no. 7, pp. 1712-1724.

74. Xiong Z., Cavaretta J., Qu L., Stolz D.B., Triulzi D., Lee J. Red blood cell microparticles show altered inflammatory chemokine binding and release ligand upon interaction with platelets. Transfusion, 2011, Vol. 51, no. 3, pp. 610-621.

75. Yamamoto S., Niida S., Azuma E.,Yanagibashi T., Muramatsu M., Huang T.T., Sagara H., Higaki S., Ikutani M., Nagai Y., Takatsu K., Miyazaki K., Hamashima T., Mori H., Matsuda N., Ishii Y., Sasahara M. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep., 2015, Vol. 5, 8505. doi: 10.1038/srep08505.

76. Zhang B., Yin Y., Lai R., Lim S. Immunotherapeutic potential of extracellular vesicles. Front. Immunol., 2014, Vol. 5, 518. doi: 10.3389/fimmu.2014.00518.

77. Zhu X., Yu B., You P., Wua Y., Fanga Y., Yanga L., Xiaa R. Ubiquitin released in the plasma of whole blood during storage promotes mRNA expression of Th2 cytokines and Th2-inducing transcription factors. Transfus.


Supplementary files

Review

For citations:


Glazanova T.V., Shilova E.R., Chechetkin A.V., Bubnova L.N. Impact of transfusion of blood components on the recipient immune system. Medical Immunology (Russia). 2021;23(6):1307-1318. (In Russ.) https://doi.org/10.15789/10.15789/1563-0625-IOT-2372

Views: 908


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)