Preview

Медицинская иммунология

Расширенный поиск

Естественные киллеры: происхождение, фенотип, функции.

https://doi.org/10.15789/1563-0625-NKC-2330

Полный текст:

Аннотация

NK-клетки (от Natural killer), или естественные киллеры, представляют собой группу лимфоцитов врожденного иммунитета, образующихся в костном мозге. Выделение NK-клеток в отдельную популяцию лимфоцитов связано с открытием их способности индуцировать гибель опухолевых клеток без предварительной сенсибилизации. В настоящем обзоре предпринята попытка систематизации представленных в литературе многочисленных данных о биологии NK-клеток. Авторами рассмотрены этапы дифференцировки NK-клеток из общего лимфоидного предшественника (CLP) в костном мозге, описаны две функционально различные популяции зрелых NK-клеток – CD56brightCDl6- и CD56dimCD16+. Кроме того, обсуждается роль цитокинов и хемокинов в развитии NK-клеток. В обзоре собраны данные о спектре экспрессируемых NK-клетками адгезионных молекул (LFA-1, LFA-2, LFA-3; αMβ2, αXβ2, L-selectin, VLA-4, VLA-5; PECAM-1; CEACAM-1), цитокиновых рецепторов (IL-1R, IL-2ra, IL-2Rb/IL-2Rc, IL-6Rα, IL-7Ra, IL-8R, IL-10R, IL-12Rβ1, IL-15ra, IL-18R, IL-21ra, IFNGR2, TGFBR, c-Kit, CXCR1, CXCR3, CXCR4, CCR4, CCR5, CCR6, CCR7, IChemR23, CX3CR1), а также рецепторов, регулирующих активность NK-клеток (LILRB1, LILRB2, LILRB4; KIR2DL1-5; KIR2DS1-5; KIR3DL1-3; KIR3DS1; NKG2A, NKG2C, NKG2D; Siglec7, Siglec9; CD16; NKRP-1; TIGIT; TACTILE; NKp30, NKp44, NKp46, NKp80; LAIR-1; PD-1; TIM-3; 2B4; TLR1-9). Авторами также рассмотрены механизмы реализации NK-клетками цитотоксической активности, в том числе за счет экспрессии MHC-I-специфических рецепторов, Fc-рецепторов CD16, взаимодействия рецепторов и лигандов апоптоза (Fas-FasL и TRAIL-TRAILR), а также других рецепторов. В обзоре подробно описано строение иммунологического синапса между NK-клеткой и клеткой-мишенью, рецепторные взаимодействия и роль цитоскелета при его формировании. Помимо активирующего иммунологического синапса, в обзоре описывается ингибирующий вариант, а также приведен пример регуляции активности NK-клеток посредством ингибирующего синапса. Авторами суммированы данные о способах экзоцитоза литических гранул NK-клетками, включающих полное или частичное слияние везикул с плазматической мембраной, экзоцитоз везикул, содержащих перфорин и FasL, и образование микровезикул, содержащих гранзим B. В обзоре описаны данные о способности NK-клеток сохранять активированное состояние в течение продолжительного времени, а также поддерживать контакт одновременно с несколькими мишенями. Помимо функций, свойственных естественным киллерам как клеткам врожденного иммунитета, авторы указывают на их способность проявлять черты клеток адаптивного иммунитета. В целом, разнообразие механизмов, регулирующих активность NK-клеток, дополняет специфические функции лимфоцитов, что делает работу иммунной системы более эффективной.

 

Об авторах

Е. В. Тыщук
ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта
Россия

Тыщук Елизавета Владимировна – лаборант-исследователь лаборатории межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий.

199034, Санкт-Петербург, Менделеевская линия, 3. Тел.: 8 (931) 963-85-78


Конфликт интересов:

нет



В. А. Михайлова
ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта; ФГБОУ ВО Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова Министерства здравоохранения РФ
Россия

Кандидат биологических наук, старший научный сотрудник лаборатории межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий НИИАГР имени Д.О. Отта; кафедра иммунологии Первый С-ПбГМУ имени академика И.П. Павлова.

Санкт-Петербург


Конфликт интересов:

NK-клетки; дифференцировка; рецепторы; цитотоксичность; иммунологический синапс; цитокины



С. А. Сельков
ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта; ФГБОУ ВО Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова Министерства здравоохранения РФ
Россия

Доктор медицинских наук, профессор, заслуженный деятель науки РФ, заведующий отделом иммунологии и межклеточных взаимодействий НИИАГР имени Д.О. Отта; профессор кафедры иммунологии Первый С-ПбГМУ имени академика И.П. Павлова.

Санкт-Петербург


Конфликт интересов:

NK-клетки; дифференцировка; рецепторы; цитотоксичность; иммунологический синапс; цитокины



Д. И. Соколов
ФГБНУ Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта; ФГБОУ ВО Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова Министерства здравоохранения РФ
Россия

Доктор биологических наук, заведующий лабораторией межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий НИИАГР имени Д.О. Отта; кафедра иммунологии Первый С-ПбГМУ имени академика И.П. Павлова.

Санкт-Петербург


Конфликт интересов:

NK-клетки; дифференцировка; рецепторы; цитотоксичность; иммунологический синапс; цитокины



Список литературы

1. Коваленко Е.И., Стрельцова М.А. Адаптивные свойства натуральных киллеров – лимфоцитов врожденного иммунитета // Биоорганическая химия, 2016. Т. 42, № 6. С. 649-667.

2. Михайлова В.А. Лимфоциты врожденного иммунитета эндометрия и децидуальной оболочки человека // Иммунология, 2019. Т. 40, № 3. С. 83-92.

3. Михайлова В.А., Онохина Я.С., Сельков С.А., Соколов Д.И. Экспрессия адгезионных молекул и хемокиновых рецепторов NK-клетками периферической крови при беременности // Иммунология, 2011. Т. 32, № 2. С. 78-81.

4. Михайлова В.А., Сельков С.А., Соколов Д.И. Фенотипические и функциональные характеристики NK–клеток при беременности // Акушерство и гинекология, 2011. № 5. С. 4-9.

5. Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2011. 752 с.

6. Abel A.M., Yang C., Thakar M.S., Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol., 2018, Vol. 9, 1869. doi: 10.3389/fimmu.2018.01869.

7. Abrahams V.M., Straszewski-Chavez S.L., Guller S., Mor G. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol. Hum. Reprod., 2004, Vol. 10, no. 1, pp. 55-63.

8. Adib-Conquy M., Scott-Algara D., Cavaillon J.M., Souza-Fonseca-Guimaraes F. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol. Cell Biol., 2014, Vol. 92, no. 3, pp. 256-262.

9. Allan D.S., Rybalov B., Awong G., Zuniga-Pflucker J.C., Kopcow H.D., Carlyle J.R., Strominger J.L. TGFbeta affects development and differentiation of human natural killer cell subsets. Eur. J. Immunol., 2010, Vol. 40, no. 8, pp. 2289-2295.

10. Ander S.E., Diamond M.S., Coyne C.B. Immune responses at the maternal-fetal interface. Sci. Immunol., 2019, Vol. 4, no. 31, eaat6114. doi: 10.1126/sciimmunol.aat6114.

11. Balaji K.N., Schaschke N., Machleidt W., Catalfamo M., Henkart P.A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med., 2002, Vol. 196, no. 4, pp. 493-503.

12. Banerjee P.P., Pandey R., Zheng R., Suhoski M.M., Monaco-Shawver L., Orange J.S. Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse. J. Exp. Med., 2007, Vol. 204, no. 10, pp. 2305-2320.

13. Barber D.F., Faure M., Long E.O. LFA-1 contributes an early signal for NK cell cytotoxicity. J. Immunol., 2004, Vol. 173, no. 6, pp. 3653-3659.

14. Bender A.T., Tzvetkov E., Pereira A., Wu Y., Kasar S., Przetak M.M., Vlach J., Niewold T.B., Jensen M.A., Okitsu S.L. TLR7 and TLR8 differentially activate the IRF and NF-kappaB pathways in specific cell types to promote inflammation. Immunohorizons, 2020, Vol. 4, no. 2, pp. 93-107.

15. Berahovich R.D., Lai N.L., Wei Z., Lanier L.L., Schall T.J. Evidence for NK cell subsets based on chemokine receptor expression. J. Immunol., 2006, Vol. 177, no. 11, pp. 7833-7840.

16. Bernardini G., Gismondi A., Santoni A. Chemokines and NK cells: regulators of development, trafficking and functions. Immunol. Lett., 2012, Vol. 145, no. 1-2, pp. 39-46.

17. Bernstone L., van Wilgenburg B., James W. Several commercially available anti-CCR5 monoclonal antibodies lack specificity and should be used with caution. Hybridoma (Larchmt), 2012, Vol. 31, no. 1, pp. 7-19.

18. Bhat R., Watzl C. Serial killing of tumor cells by human natural killer cells – enhancement by therapeutic antibodies. PLoS One, 2007, Vol. 2, no. 3, e326. doi: 10.1371/journal.pone.0000326.

19. Bin N.R., Ma K., Tien C.W., Wang S., Zhu D., Park S., Turlova E., Sugita K., Shirakawa R., van der Sluijs P., Horiuchi H., Sun H.S., Monnier P.P., Gaisano H.Y., Sugita S. C2 Domains of Munc13-4 Are Crucial for Ca(2+)-dependent degranulation and cytotoxicity in NK cells. J. Immunol., 2018, Vol. 201, no. 2, pp. 700-713.

20. Bonanni V., Sciume G., Santoni A., Bernardini G. Bone marrow NK cells: origin, distinctive features, and requirements for tissue localization. Front. Immunol., 2019, Vol. 10, 1569. doi: 10.3389/fimmu.2019.01569.

21. Bozzano F., Perrone C., Moretta L., de Maria A. NK cell precursors in human bone marrow in health and inflammation. Front. Immunol., 2019, Vol. 10, 2045. doi: 10.3389/fimmu.2019.02045.

22. Bulla R., Villa A., Bossi F., Cassetti A., Radillo O., Spessotto P., de Seta F., Guaschino S., Tedesco F. VEcadherin is a critical molecule for trophoblast-endothelial cell interaction in decidual spiral arteries. Exp. Cell Res., 2005, Vol. 303, no. 1, pp. 101-113.

23. Campbell K.S., Purdy A.K. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology, 2011, Vol. 132, no. 3, pp. 315-325.

24. Carman C.V., Springer T.A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol., 2004, Vol. 167, no. 2, pp. 377-388.

25. Cartwright J.E., Balarajah G. Trophoblast interactions with endothelial cells are increased by interleukin 1beta and tumour necrosis factor alpha and involve vascular cell adhesion molecule-1 and alpha4beta1. Exp. Cell Res., 2005, Vol. 304, no. 1, pp. 328-336.

26. Chitadze G., Lettau M., Bhat J., Wesch D., Steinle A., Furst D., Mytilineos J., Kalthoff H., Janssen O., Oberg H.H., Kabelitz D. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer, 2013, Vol. 133, no. 7, pp. 1557-1566.

27. Cichocki F., Schlums H., Theorell J., Tesi B., Miller J.S., Ljunggren H.G., Bryceson Y.T. Diversification and functional specialization of human NK cell subsets. Curr. Top. Microbiol. Immunol., 2016, Vol. 395, pp. 63-94.

28. Cohnen A., Chiang S.C., Stojanovic A., Schmidt H., Claus M., Saftig P., Janssen O., Cerwenka A., Bryceson Y.T., Watzl C. Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood, 2013, Vol. 122, no. 8, pp. 1411-1418.

29. Cooper M.A., Fehniger T.A., Turner S.C., Chen K.S., Ghaheri B.A., Ghayur T., Carson W.E., Caligiuri M.A. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood, 2001, Vol. 97, no. 10, pp. 3146-3151.

30. Cui G., Hara T., Simmons S., Wagatsuma K., Abe A., Miyachi H., Kitano S., Ishii M., Tani-ichi S., Ikuta K. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc. Natl Acad. Sci. USA, 2014, Vol. 111, no. 5, pp. 1915-1920.

31. Del Zotto G., Marcenaro E., Vacca P., Sivori S., Pende D., Della Chiesa M., Moretta F., Ingegnere T., Mingari M.C., Moretta A., Moretta L. Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin. Cytom., 2017, Vol. 92, no. 2, pp. 100-114.

32. Diefenbach A., Colonna M., Romagnani C. The ILC World Revisited. Immunity, 2017, Vol. 46, no. 3, pp. 327-332.

33. Dunne J.L., Collins R.G., Beaudet A.L., Ballantyne C.M.,Ley K. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J. Immunol., 2003, Vol. 171, no. 11, pp. 6105-6111.

34. Dustin M.L., Long E.O. Cytotoxic immunological synapses. Immunol. Rev., 2010, Vol. 235, no. 1, pp. 24-34.

35. Elliott J.M., Wahle J.A., Yokoyama W.M. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J. Exp. Med., 2010, Vol. 207, no. 10, pp. 2073-2079.

36. Elstak E.D., Neeft M., Nehme N.T., Callebaut I., de Saint Basile G., van der Sluijs P. Munc13-4*rab27 complex tethers secretory lysosomes at the plasma membrane. Commun. Integr. Biol., 2012, Vol. 5, no. 1, pp. 64-67.

37. Ferrari de Andrade L., Tay R.E., Pan D., Luoma A.M., Ito Y., Badrinath S., Tsoucas D., Franz B., May K.F., Jr., Harvey C.J., Kobold S., Pyrdol J.W., Yoon C., Yuan G.C., Hodi F.S., Dranoff G.,Wucherpfennig K.W. Antibodymediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science, 2018, Vol. 359, no. 6383, pp. 1537-1542.

38. Foley B., Felices M., Cichocki F., Cooley S., Verneris M.R., Miller J.S. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol. Rev., 2014, Vol. 258, no. 1, pp. 45-63.

39. Frangsmyr L., Baranov V., Nagaeva O., Stendahl U., Kjellberg L., Mincheva-Nilsson L. Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol. Hum. Reprod., 2005, Vol. 11, no. 1, pp. 35-41.

40. Freud A.G., Yu J., Caligiuri M.A. Human natural killer cell development in secondary lymphoid tissues. Semin. Immunol., 2014, Vol. 26, no. 2, pp. 132-137.

41. Frumento G., Rotondo R., Tonetti M., Damonte G., Benatti U., Ferrara G.B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med., 2002, Vol. 196, no. 4, pp. 459-468.

42. Frutoso M., Mortier E. NK Cell Hyporesponsiveness: more is not always better. Int. J. Mol. Sci., 2019, Vol. 20, no. 18, 4514. doi: 10.3390/ijms20184514.

43. Fu B., Zhou Y., Ni X., Tong X., Xu X., Dong Z., Sun R., Tian Z., Wei H. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors. Immunity, 2017, Vol. 47, no. 6, pp. 1100-1113.e6.

44. Furuya M., Kurasawa K., Nagahama K., Kawachi K., Nozawa A., Takahashi T., Aoki I. Disrupted balance of angiogenic and antiangiogenic signalings in preeclampsia. J. Pregnancy, 2011, Vol. 2011, 123717. doi: 10.1155/2011/123717.

45. Gismondi A., Morrone S., Humphries M.J., Piccoli M., Frati L., Santoni A. Human natural killer cells express VLA-4 and VLA-5, which mediate their adhesion to fibronectin. J. Immunol., 1991, Vol. 146, no. 1, pp. 384-392.

46. Gotthardt D., Trifinopoulos J., Sexl V., Putz E.M. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation. Front. Immunol., 2019, Vol. 10, 2590. doi: 10.3389/fimmu.2019.02590.

47. Hedlund M., Stenqvist A.C., Nagaeva O., Kjellberg L., Wulff M., Baranov V., Mincheva-Nilsson L. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol., 2009, Vol. 183, no. 1, pp. 340-351.

48. Hiby S.E., Apps R., Sharkey A.M., Farrell L.E., Gardner L., Mulder A., Claas F.H., Walker J.J., Redman C.W., Morgan L., Tower C., Regan L., Moore G.E., Carrington M., Moffett A. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest., 2010, Vol. 120, no. 11, pp. 4102-4110.

49. Hiebert P.R., Granville D.J. Granzyme B in injury, inflammation, and repair. Trends Mol. Med., 2012, Vol. 18, no. 12, pp. 732-41.

50. Ikeda H., Old L.J., Schreiber R.D. The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev., 2002, Vol. 13, no. 2, pp. 95-109.

51. Kang X., Kim J., Deng M., John S., Chen H., Wu G., Phan H., Zhang C.C. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle, 2016, Vol. 15, no. 1, pp. 25-40.

52. Konjevic G.M., Vuletic A.M., Mirjacic Martinovic K.M., Larsen A.K., Jurisic V.B. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine, 2019, Vol. 117, pp. 30-40.

53. Krzewski K., Strominger J.L. The killer’s kiss: the many functions of NK cell immunological synapses. Curr. Opin. Cell Biol., 2008, Vol. 20, no. 5, pp. 597-605.

54. Kumar S. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Immunology, 2018, Vol. 154, no. 3, pp. 383-393.

55. Lagrue K., Carisey A., Oszmiana A., Kennedy P.R., Williamson D.J., Cartwright A., Barthen C., Davis D.M. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunol. Rev., 2013, Vol. 256, no. 1, pp. 203-221.

56. Lanier L.L. NKG2D Receptor and its ligands in host defense. Cancer Immunol. Res., 2015, Vol. 3, no. 6, pp. 575-582.

57. Lanier L.L., Yu G., Phillips J.H. Analysis of Fc gamma RIII (CD16) membrane expression and association with CD3 zeta and Fc epsilon RI-gamma by site-directed mutation. J. Immunol., 1991, Vol. 146, no. 5, pp. 1571-1576.

58. Lanier L.L., Yu G., Phillips J.H. Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature, 1989, Vol. 342, no. 6251, pp. 803-805.

59. Lazetic S., Chang C., Houchins J.P., Lanier L.L., Phillips J.H. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J. Immunol., 1996, Vol. 157, no. 11, pp. 4741-4745.

60. Lee C.C., Avalos A.M., Ploegh H.L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol., 2012, Vol. 12, no. 3, pp. 168-179.

61. Li Z., Deng M., Huang F., Jin C., Sun S., Chen H., Liu X., He L., Sadek A.H., Zhang C.C. LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell. Mol. Immunol., 2020, Vol. 17, no. 3, pp. 272-282.

62. Linhares-Lacerda L., Ribeiro-Alves M., Nogueira A.C., Mendes-da-Cruz D.A., Magalhaes D.A., Dardenne M., Passos G.A., Savino W. RNA interference-mediated knockdown of CD49e (alpha5 integrin chain) in human thymic epithelial cells modulates the expression of multiple genes and decreases thymocyte adhesion. BMC Genomics, 2010, Vol. 11, Suppl. 5, S2. doi: 10.1186/1471-2164-11-S5-S2.

63. Liu S., Zhang H., Li M., Hu D., Li C., Ge B., Jin B., Fan Z. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ., 2013, Vol. 20, no. 3, pp. 456-464.

64. Liu X.T., Sun H.T., Zhang Z.F., Shi R.X., Liu L.B., Yu J.J., Zhou W.J., Gu C.J., Yang S.L., Liu Y.K., Yang H.L., Xu F.X., Li M.Q. Indoleamine 2,3-dioxygenase suppresses the cytotoxicity of 1 NK cells in response to ectopicendometrial stromal cells in endometriosis. Reproduction, 2018, Vol. 156, no. 5, pp. 397-404.

65. Lopez J.A., Susanto O., Jenkins M.R., Lukoyanova N., Sutton V.R., Law R.H., Johnston A., Bird C.H., Bird P.I., Whisstock J.C., Trapani J.A., Saibil H.R., Voskoboinik I. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood, 2013, Vol. 121, no. 14, pp. 2659-2668.

66. Lu L., Zhang A.Y., Camp W.L., Qian S. Natural killer cell induction of tolerance. In book: natural killer cells. Basic science and clinical application. Academic Press, 2010, pp. 617-631.

67. Mace E.M., Dongre P., Hsu H.T., Sinha P., James A.M., Mann S.S., Forbes L.R., Watkin L.B., Orange J.S. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol. Cell Biol., 2014, Vol. 92, no. 3, pp. 245-255.

68. Maghazachi A.A. Role of chemokines in the biology of natural killer cells. Curr. Top. Microbiol. Immunol., 2010, Vol. 341, pp. 37-58.

69. Mandelboim O., Lieberman N., Lev M., Paul L., Arnon T.I., Bushkin Y., Davis D.M., Strominger J.L., Yewdell J.W., Porgador A. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 2001, Vol. 409, no. 6823, pp. 1055-1060.

70. Mariuzza R.A., Agnihotri P., Orban J. The structural basis of T-cell receptor (TCR) activation: An enduring enigma. J. Biol. Chem., 2020, Vol. 295, no. 4, pp. 914-925.

71. Matesanz-Isabel J., Sintes J., Llinas L., de Salort J., Lazaro A., Engel P. New B-cell CD molecules. Immunol. Lett., 2011, Vol. 134, no. 2, pp. 104-112.

72. Mattiola I., Pesant M., Tentorio P.F., Molgora M., Marcenaro E., Lugli E., Locati M., Mavilio D. Priming of human resting NK cells by autologous M1 macrophages via the engagement of IL-1beta, IFN-beta, and IL-15 pathways. J. Immunol., 2015, Vol. 195, no. 6, pp. 2818-2828.

73. McCann F.E., Vanherberghen B., Eleme K., Carlin L.M., Newsam R.J., Goulding D., Davis D.M. The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J. Immunol., 2003, Vol. 170, no. 6, pp. 2862-2870.

74. McQuaid A., Tormey V.J., Trafford B., Webster A.D., Bofill M. Evidence for increased expression of regulatory cytokine receptors interleukin-12R and interleukin-18R in common variable immunodeficiency. Clin. Exp. Immunol., 2003, Vol. 134, no. 2, pp. 321-327.

75. Mei B., Zhang S.R., Chen Y.L., Wang C.F. Defects in NKG2D ligand expression result in failed tolerance induction at the maternal-fetal interface: a possible cause for recurrent miscarriage. Med. Hypotheses, 2012, Vol. 79, no. 4, pp. 465-467.

76. Meniailo M.E., Malashchenko V.V., Shmarov V.A., Gazatova N.D., Melashchenko O.B., Goncharov A.G., Seledtsova G.V., Seledtsov V.I. Direct effects of interleukin-8 on growth and functional activity of T lymphocytes. Int. Immunopharmacol., 2017, Vol. 50, pp. 178-185.

77. Metkar S.S., Wang B., Aguilar-Santelises M., Raja S.M., Uhlin-Hansen L., Podack E., Trapani J.A., Froelich C.J. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation. Immunity, 2002, Vol. 16, no. 3, pp. 417-428.

78. Meza Guzman L.G., Keating N., Nicholson S.E. Natural killer cells: tumor surveillance and signaling. Cancers (Basel), 2020, Vol. 12, no. 4, 952. doi: 10.3390/cancers12040952.

79. Mihara M., Hashizume M., Yoshida H., Suzuki M., Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. (Lond.), 2012, Vol. 122, no. 4, pp. 143-159.

80. Mikhailova V.A., Bazhenov D.O., Belyakova K.L., Selkov S.A., Sokolov D.I. Differentiation of NK cells. A look through the prism of transcription factors and intercellular messengers. Medical Immunology (Russia), 2019, Vol. 21, no. 1, pp. 21-38. doi: 10.15789/1563-0625-2019-1-21-38.

81. Mikhailova V.A., Belyakova K.L., Selkov S.A., Sokolov D.I. Peculiarities of NK cells differentiation: CD56dim and CD56bright NK cells at pregnancy and in non-pregnant state. Medical Immunology (Russia), 2017, Vol. 19, no. 1, pp. 19-26. doi: 10.15789/1563-0625-2017-1-19-26.

82. Mincheva-Nilsson L., Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin. Cancer Biol., 2014, Vol. 28, pp. 24-30.

83. Moffett A., Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Invest., 2014, Vol. 124, no. 5, pp. 1872-1879.

84. Moniuszko M., Kowal K., Jeznach M., Rusak M., Dabrowska M., Bodzenta-Lukaszyk A. Phenotypic correlations between monocytes and CD4+ T cells in allergic patients. Int. Arch. Allergy Immunol., 2013, Vol. 161, no. 2, pp. 131-141.

85. Montaldo E., Del Zotto G., Della Chiesa M., Mingari M.C., Moretta A., De Maria A., Moretta L. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A, 2013, Vol. 83, no. 8, pp. 702-713.

86. Montaldo E., Vitale C., Cottalasso F., Conte R., Glatzer T., Ambrosini P., Moretta L., Mingari M.C. Human NK cells at early stages of differentiation produce CXCL8 and express CD161 molecule that functions as an activating receptor. Blood, 2012, Vol. 119, no. 17, pp. 3987-3996.

87. Moretta A., Bottino C., Vitale M., Pende D., Cantoni C., Mingari M.C., Biassoni R., Moretta L. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol., 2001, Vol. 19, pp. 197-223.

88. Netter P., Anft M., Watzl C. Termination of the activating NK cell immunological synapse is an active and regulated process. J. Immunol., 2017, Vol. 199, no. 7, pp. 2528-2535.

89. Nieto M., Navarro F., Perez-Villar J.J., del Pozo M.A., Gonzalez-Amaro R., Mellado M., Frade J.M., Martinez A.C., Lopez-Botet M., Sanchez-Madrid F. Roles of chemokines and receptor polarization in NK-target cell interactions. J. Immunol., 1998, Vol. 161, no. 7, pp. 3330-3339.

90. Nowak I., Wilczynska K., Wilczynski J.R., Malinowski A., Radwan P., Radwan M., Kusnierczyk P. KIR, LILRB and their Ligands’ Genes as Potential Biomarkers in Recurrent Implantation Failure. Arch. Immunol. Ther. Exp. (Warsz), 2017, Vol. 65, no. 5, pp. 391-399.

91. O’Leary J.G., Goodarzi M., Drayton D.L., von Andrian U.H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol., 2006, Vol. 7, no. 5, pp. 507-516.

92. Orange J.S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol., 2008, Vol. 8, no. 9, pp. 713-725.

93. Orange J.S., Harris K.E., Andzelm M.M., Valter M.M., Geha R.S., Strominger J.L. The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl Acad. Sci. USA, 2003, Vol. 100, no. 24, pp. 14151-14156.

94. Orange J.S., Ramesh N., Remold-O’Donnell E., Sasahara Y., Koopman L., Byrne M., Bonilla F.A., Rosen F.S., Geha R.S., Strominger J.L. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc. Natl Acad. Sci. USA, 2002, Vol. 99, no. 17, pp. 11351-11356.

95. Pahl J.H.W., Cerwenka A., Ni J. Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Front. Immunol., 2018, Vol. 9, 2796. doi: 10.3389/fimmu.2018.02796.

96. Pende D., Parolini S., Pessino A., Sivori S., Augugliaro R., Morelli L., Marcenaro E., Accame L., Malaspina A., Biassoni R., Bottino C., Moretta L., Moretta A. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med., 1999, Vol. 190, no. 10, pp. 1505-1516.

97. Phatarpekar P.V., Billadeau D.D. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J. Cell Sci., 2020, Vol. 133, no. 5, jcs240424. doi: 10.1242/jcs.240424.

98. Pollheimer J., Vondra S., Baltayeva J., Beristain A.G., Knofler M. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front. Immunol., 2018, Vol. 9, 2597. doi: 10.3389/fimmu.2018.02597.

99. Prager I., Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol., 2019, Vol. 105, no. 6, pp. 1319-1329.

100. Qu X., Tang Y., Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front. Immunol., 2018, Vol. 9, 563. doi: 10.3389/fimmu.2018.00563.

101. Rajagopalan S., Long E.O. KIR2DL4 (CD158d): An activation receptor for HLA-G. Front. Immunol., 2012, Vol. 3, 258. doi: 10.3389/fimmu.2012.00258.

102. Rajashekhar G., Loganath A., Roy A.C., Chong S.S., Wong Y.C. Hypoxia up-regulated angiogenin and down-regulated vascular cell adhesion molecule-1 expression and secretion in human placental trophoblasts. J. Soc. Gynecol. Investig., 2005, Vol. 12, no. 5, pp. 310-319.

103. Rebuli M.E., Pawlak E.A., Walsh D., Martin E.M., Jaspers I. Distinguishing human peripheral blood NK cells from CD56(dim)CD16(dim)CD69(+)CD103(+) resident nasal mucosal lavage fluid cells. Sci. Rep., 2018, Vol. 8, no. 1, 3394. doi: 10.1038/s41598-018-21443-5.

104. Regis S., Dondero A., Caliendo F., Bottino C., Castriconi R. NK cell function regulation by TGF-betainduced epigenetic mechanisms. Front. Immunol., 2020, Vol. 11, 311. doi: 10.3389/fimmu.2020.00311.

105. Renoux V.M., Zriwil A., Peitzsch C., Michaelsson J., Friberg D., Soneji S., Sitnicka E. Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity, 2015, Vol. 43, no. 2, pp. 394-407.

106. Romee R., Schneider S.E., Leong J.W., Chase J.M., Keppel C.R., Sullivan R.P., Cooper M.A., Fehniger T.A. Cytokine activation induces human memory-like NK cells. Blood, 2012, Vol. 120, no. 24, pp. 4751-4760.

107. Rousalova I., Krepela E. Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int. J. Oncol., 2010, Vol. 37, no. 6, pp. 1361-1378.

108. Sanchez-Correa B., Valhondo I., Hassouneh F., Lopez-Sejas N., Pera A., Bergua J.M., Arcos M.J., Banas H., Casas-Aviles I., Duran E., Alonso C., Solana R., Tarazona R. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers (Basel), 2019, Vol. 11, no. 6, 877. doi: 10.3390/cancers11060877.

109. Schleinitz N., March M.E., Long E.O. Recruitment of activation receptors at inhibitory NK cell immune synapses. PLoS One, 2008, Vol. 3, no. 9, e3278. doi: 10.1371/journal.pone.0003278.

110. Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol., 2019, Vol. 16, no. 5, pp. 430-441.

111. Sokolov D.I., Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Y.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi: 10.15789/1563-0625-2019-4-669-688.

112. Stenqvist A.C., Nagaeva O., Baranov V., Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosomemediated immune privilege of the fetus. J. Immunol., 2013, Vol. 191, no. 11, pp. 5515-5523.

113. Stojanovic A., Correia M.P.,Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. Cancer Microenviron., 2013, Vol. 6, no. 2, pp. 135-146.

114. Suarez-Fueyo A., Bradley S.J., Katsuyama T., Solomon S., Katsuyama E., Kyttaris V.C., Moulton V.R., Tsokos G.C. Downregulation of CD3zeta in NK cells from systemic lupus erythematosus patients confers a proinflammatory phenotype. J. Immunol., 2018, Vol. 200, no. 9, pp. 3077-3086.

115. Sun H., Sun C., Xiao W. Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine, 2014, Vol. 65, no. 1, pp. 33-41.

116. Takahashi H., Yamamoto T., Yamazaki M., Murase T., Matsuno T., Chishima F. Natural cytotoxicity receptors in decidua natural killer cells of term normal pregnancy. J. Pregnancy, 2018, Vol. 2018, 4382084. doi: 10.1155/2018/4382084.

117. Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu. Rev. Immunol., 2003, Vol. 21, pp. 335-376

118. Thomas L.M., Peterson M.E., Long E.O. Cutting edge: NK cell licensing modulates adhesion to target cells. J. Immunol., 2013, Vol. 191, no. 8, pp. 3981-3985.

119. Tufa D.M., Ahmad F., Chatterjee D., Ahrenstorf G., Schmidt R.E., Jacobs R. IL-1beta limits the extent of human 6-sulfo LacNAc dendritic cell (slanDC)-mediated NK cell activation and regulates CD95-induced apoptosis. Cell. Mol. Immunol., 2017, Vol. 14, no. 12, pp. 976-985.

120. Urlaub D., Hofer K., Muller M.L.,Watzl C. LFA-1 Activation in NK Cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J. Immunol., 2017, Vol. 198, no. 5, pp. 1944-1951.

121. Vacca P., Vitale C., Montaldo E., Conte R., Cantoni C., Fulcheri E., Darretta V., Moretta L., Mingari M.C. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA, 2011, Vol. 108, no. 6, pp. 2402-2407.

122. van Buul J.D., Mul F.P., van der Schoot C.E., Hordijk P.L. ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells. J. Vasc. Res., 2004, Vol. 41, no. 1, pp. 28-37.

123. van der Haar Avila I., Marmol P., Cany J., Kiessling R., Pico de Coana Y. Evaluating antibody-dependent cell-mediated cytotoxicity by flow cytometry. Methods Mol. Biol., 2019, Vol. 1913, pp. 181-194.

124. van Horssen R., Ten Hagen T.L., Eggermont A.M. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 2006, Vol. 11, no. 4, pp. 397-408.

125. Voloshin T., Alishekevitz D., Kaneti L., Miller V., Isakov E., Kaplanov I., Voronov E., Fremder E., Benhar M., Machluf M., Apte R.N., Shaked Y. Blocking IL1beta pathway following paclitaxel chemotherapy slightly inhibits primary tumor growth but promotes spontaneous metastasis. Mol. Cancer Ther., 2015, Vol. 14, no. 6, pp. 1385-1394.

126. Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol., 2015, Vol. 15, no. 6, pp. 388-400.

127. Wang R., Jaw J.J., Stutzman N.C., Zou Z., Sun P.D. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol., 2012, Vol. 91, no. 2, pp. 299-309.

128. Wei J., Satomi M., Negishi Y., Matsumura Y., Miura A., Nishi Y., Asakura H., Takeshita T. Effect of sera on the adhesion of natural killer cells to the endothelium in severe pre-eclampsia. J. Obstet. Gynaecol. Res., 2006, Vol. 32, no. 5, pp. 443-448.

129. Woodfin A., Voisin M.B., Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol., 2007, Vol. 27, no. 12, pp. 2514-2523.

130. Wu J., Gao F.X., Wang C., Qin M., Han F., Xu T., Hu Z., Long Y., He X.M., Deng X., Ren D.L., Dai T.Y. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2019, Vol. 38, no. 1, 321. doi: 10.1186/s13046-019-1310-0.

131. Yamaguchi T., Kitaya K., Daikoku N., Yasuo T., Fushiki S., Honjo H. Potential selectin L ligands involved in selective recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. Biol. Reprod., 2006, Vol. 74, no. 1, pp. 35-40.

132. Yokoyama W.M., Riley J.K. NK cells and their receptors. Reprod. Biomed. Online, 2008, Vol. 16, no. 2, pp. 173-191.

133. Yu J., Freud A.G., Caligiuri M.A. Location and cellular stages of natural killer cell development. Trends Immunol., 2013, Vol. 34, no. 12, pp. 573-582.

134. Zaiatz-Bittencourt V., Finlay D.K., Gardiner C.M. Canonical TGF-beta signaling pathway represses human NK cell metabolism. J. Immunol., 2018, Vol. 200, no. 12, pp. 3934-3941.

135. Zhang J., Liu J., Chen H., Wu W., Li X., Wu Y., Wang Z., Zhang K., Li Y., Weng Y., Liao H., Gu L. Specific immunotherapy generates CD8(+) CD196(+) T cells to suppress lung cancer growth in mice. Immunol. Res., 2016, Vol. 64, no. 4, pp. 1033-1040.


Дополнительные файлы

Рецензия

Для цитирования:


Тыщук Е.В., Михайлова В.А., Сельков С.А., Соколов Д.И. Естественные киллеры: происхождение, фенотип, функции. Медицинская иммунология. 2021;23(6):1207-1228. https://doi.org/10.15789/1563-0625-NKC-2330

For citation:


Tyshchuk E.V., Mikhailova V.A., Selkov S.A., Sokolov D.I. Natural killer cells: origin, phenotype, function. Medical Immunology (Russia). 2021;23(6):1207-1228. (In Russ.) https://doi.org/10.15789/1563-0625-NKC-2330

Просмотров: 4680


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)