Preview

Medical Immunology (Russia)

Advanced search

Role of the cellular immunity in the formation of the immune response in coronavirus infections

https://doi.org/10.15789/1563-0625-ROT-2302

Abstract

The data obtained during previous epidemics caused by coronaviruses, and current pandemic indicate that assessing the role of certain immune interactions between these viruses and the microorganism is the main pre-requisite for development of diagnostic test systems as well as effective medical drugs and preventive measures. The review summarizes the results of studying patho– and immunogenesis of SARSCoV, MERS-CoV, and SARS-CoV-2 infections. These coronaviruses were proven to suppress development of adaptive immune response at the stage of its induction, affecting the number and functional activity of lymphocytes, effectors of cellular immunity, causing impairment of lymphopoiesis, apoptosis and «depletion» of these cells, thus leading to longer duration of the disease and increased viral load. Information about the role of cellular immunity in development of immune response to coronaviruses is presented. It was proven that the causative agents of SARS, MERS and COVID-19 trigger adaptive immune response in the microorganism according to both humoral and cellular types. Moreover, the synthesis of specific immunoglobulins does not yet point to presence of protective immune response. Activation of the cellular link of immunity is also important. A high degree of antigenic epitope homology in SARS-CoV, MERS-CoV and SARS-CoV-2 is described, thus suggesting an opportunity for cross-immunity to coronaviruses. The review addresses issues related to the terms of specific memory immune cells to SARS-CoV, MERS-CoV and SARS-CoV-2, and their role in providing long-term protection against these infections. Given that specific antibodies to SARS and MERS pathogens persisted for a year, were often not detected or briefly registered in patients with mild and asymptomatic infections, we can talk about important role of the cellular immune response in providing immunity to these coronaviruses. It was shown that, in contrast to antibodies, the antigen-specific memory T cells were registered in patients with SARS virus for 4 to 11 years, and Middle East Respiratory Syndrome – up to two years. Further research is needed to determine presence and number of memory T cells in COVID-19. A comparative analysis of data obtained during previous epidemics with respect to formation of adaptive immunity to coronaviruses. Description of proteins and epitopes recognized by human T lymphocytes will be useful in monitoring immune responses in COVID-19 patients, as well as in developing informative tests to study T cell immune response to SARS-CoV-2 and new preventive drugs.

About the Authors

I. A. Ivanova
Rostov-on-Don Plague Control Research Institute
Russian Federation

Ivanova Inna A. - PhD (Biology), Leading Research Associate, Acting Head, Laboratory of Immunology of Specially Dangerous Infections.

344002, Rostov-on-D.on, Maxim Gorky str., 117/40. Phone: 7 (863) 240-91-22. Fax: 7 (863) 267-02-23


Competing Interests:

no



N. D. Omelchenko
Rostov-on-Don Plague Control Research Institute

Natalia Omelchenko - PhD (Medicine), Senior Research Associate, Laboratory of Immunology of Specially Dangerous Infections.

Rostov-on-Don


Competing Interests:

no



A. V. Filippenko
Rostov-on-Don Plague Control Research Institute
Russian Federation

Anna Filippenko - Junior Research Associate.

Rostov-on-Don


Competing Interests:

no



A. A. Trufanova
Rostov-on-Don Plague Control Research Institute
Russian Federation

Anastasia Trufanova - Junior Research Associate, Laboratory of Immunology of Specially Dangerous Infections.

Rostov-on-Don


Competing Interests:

no



A. K. Noskov
Rostov-on-Don Plague Control Research Institute
Russian Federation

Aleksej Noskov - Director.

Rostov-on-Don


Competing Interests:

нет



References

1. Kostinov M.P., Shmatko A.D., Polishchuk V.B., Khromova E.A. Modern ideas about the new coronavirus and the disease caused by SARS-CoV. Infektsionnye bolezni: novosti, mneniya, obuchenie = Infectious Diseases: News, Opinions, Training, 2020, Vol. 9, no. 2, pp. 33-42. (In Russ.)

2. Paschenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya = Immunologiya, 2020, Vol. 41, no. 1, pp. 5-18. (In Russ.)

3. Smirnov V.S., Totolyan A.A. Innate immunity in coronavirus infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, Vol. 10, no. 2, pp. 259-268. (In Russ.) doi: 10.15789/2220-7619-111-1440.

4. Alshukairi A.N., Khalid I., Ahmed W.A., Dada A.M., Bayumi D.T., Malic L.S., Althawadi S., Ignacio K., Alsalmi H.S., Al-Abdali H.M., Wali G.Y., Kushak I.A., Alraddadi B.M., Perlman S. Antibody response and disease severity in healthcare worker MERS survivors. Emerg. Inf. Dis., 2016, no. 22, pp. 1113-1115.

5. Al-Tawfiq J.A., Hinedi K., Abbasi S., Babiker M., Sunji A., Eltigani M. Hematologic, hepatic and renal function changes in hospitalized patients with Middle East Respiratory Syndrome coronavirus. Int. J. Lab. Hematol., 2017, Vol. 39, no. 3, pp. 272–278.

6. Cameron M.J., Bermejo-Martin J.F., Danesh A., Muller M.P., Kelvin D.J. Human immunopathogenesis of Severe Acute Respiratory Syndrome (SARS). Virus Res., 2008, Vol. 133, no. 1, pp. 13-19.

7. Chandrashekar A., Liu J., Martinot A.J., McMahan K., Mercado N.B., Peter L., Tostanoski L.H., Yu J., Maliga Z., Nekorchuk M., Busman-Sahay K., Terry M., Wrijil L.M., Ducat S., Martinez D.R., Atyeo C., Fischinger S., Burke J.S., Slein M.D., Pessaint L., Ry A.V., Greenhouse J., Taylor T., Blade K., Cook A., Finneyfrock B., Brown R., Teow E., Velasco J., Zahn R., Wegmann F., Abbink P., Bondzie E.A., Dagotto G., Gebre M.S., He X., JacobDonal C., Kordana N., Li Z., Lifton M.A., Mahrokhian S.H., Maxfield L.F., Nityanandam R., Nkolola J.P., Schmidt A.G., Miller A.D., Baric R.S., Alter G., Sorger P.K., Estes J.D., Andersen H., Lewis M.G., Barouch D.H. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, Vol. 369, no. 6505, pp. 812-817.

8. Channappanavar R., Zhao J., Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol. Res., 2014, Vol. 59, no. 1, pp. 118-128.

9. Channappanavar R., Fett C., Zhao J., Meyerholz D.K., Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol., 2014, Vol. 88, no. 19, pp. 11034-11044.

10. Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B. Jr, Meyerholz D.K., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, Vol. 129, no. 9, pp. 625-639.

11. Chen J., Subbarao K. The immunobiology of SARS. Annu. Rev. Immunol., 2007, no. 25, pp. 443-472.

12. Chen J., Lau Y.F., Lamirande E.W., Paddock C.D., Bartlett J.H., Zaki S.R., Subbarao K. Cellular immune responses to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) infection in senescent BALB/c Mice: CD4+ T cells are important in control of SARS-CoV Infection. J. Virol., 2010, Vol. 84, no. 3, pp. 1289-1301.

13. Chu H., Zhou J., Wong B.H., Li C., Chan J.F., Cheng Z.S., Yang D., Wang D., Chak-Yiu L.A., Li C., Yeung M., Cai J., Chan I.H., Ho W., To K.K., Zheng B., Yao Y., Qin C., Yuen K. Middle East Respiratory Syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J. Infect. Dis., 2016, Vol. 213, no. 6, pp. 904-914.

14. Corman V.M., Albarrak A.M., Omrani A.S., Albarrak M.M., Farah M.E., Almasri M., Muth D., Sieberg A., Meyer B., Assiri A.M. Viral shedding and antibody response in 37 patients with Middle East Respiratory Syndrome coronavirus infection. Clin. Infect. Dis., 2016, Vol. 62, pp. 477-483.

15. Cottam E.M., Whelband M.C., Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy, 2014, Vol. 10, no. 8, pp. 1426-1441.

16. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, Vol. 14, no. 8, pp. 523-534.

17. Deng X., van Geelen A., Buckley A.C., O’Brien A., Pillatzki A., Lager K.M., Faaberg K.S., Baker S.C. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. J. Virol., 2019, Vol. 93, no. 8, e02000-18. doi: 10.1128/JVI.02000-18.

18. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y., Chen Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol., 2020, Vol. 11, 827. doi: 10.3389/fimmu.2020.00827.

19. Drosten C., Meyer B., Muller M.A., Corman V.M., Al-Masri M., Hossain R., Madani H., Sieberg A., Bosch B.J., Lattwein E., Alhakeem R.f., Assiri A.M., Hajomar W., Albarrak A., Al-Tawfiq J.A., Zumla A., Memish Z. Transmission of MERS coronavirus in household contacts. N. Engl. J. Med., 2014, Vol. 371, pp. 828-835.

20. Elizaldi S., Lakshmanappa Y.S., Roh J., Schmidt B., Carroll T., Weaver K., Smith J.C., Deere J.D., Dutra J., Stone M., Sammak R.L., Olstad K.J., Reader J.R., Ma Z.-M., Nguyen N.K., Watanabe J., Usachaenko J., Immareddy R., Yee J.L., Weiskopf D., Sette A., Hartigan-O’Connor D., McSorley S.J., Morrison J.H., Tran N.K., Simmons G., Busch M.P., Kozlowski P.A., Van Rompay K.K.A., Miller C.J., Iyer S.S. SARS-CoV-2 infection induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Res. Sq. Preprint, 2020. doi: 10.21203/rs.3.rs-51545/v1.

21. Enjuanes L., Zuniga S., Castano-Rodriguez C., Gutierrez-Alvarez J., Canton J., Sola I. Molecular basis of coronavirus virulenceand vaccine development. Adv. Virus Res., 2016, Vol. 96, pp. 245-286.

22. Fan Y.-Y., Huang Z.-T., Li L., Wu M.-H., Yu T., Koup R.A., Bailer R.T., Wu C.-Y. Characterization of SARSCoV-specific memory T cells from recovered individuals 4 years after infection. Arch. Virol., 2009, Vol. 154, no. 7, pp. 1093-1099.

23. Frieman M., Heise M., Baric R. SARS coronavirus and innate immunity. Virus. Res., 2008, Vol. 133, no 1, pp. 101-112.

24. Gallais F., Velay A., Wendling M.-J., Nazon C., Partisani M., Sibilia J., Candon S., Fafi-Kremer S. Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without seroconversion. medRxiv 2020.06.21.2013244. Preprint, 2020. doi: 10.1101/2020.06.21.20132449.

25. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.-E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukouet A. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe, 2020, Vol. 27, no. 6, pp. 992-1000.

26. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Jennifer M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M, Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, Vol.181, pp. 1489-1501.

27. Gu J., Korteweg C. Pathology and pathogenesis of Severe Acute Respiratory Syndrome. Am. J. Pathol., 2007, Vol. 170, pp. 1136-1147.

28. Guihot A., Litvinova E., Autran B., Debré P., Vieillard V. Cell-mediated immune responses to COVID-19 infection. Front. Immunol., 2020, Vol. 11, 1662. doi: 10.3389/FIMMU.2020.01662.

29. Hajeer A.H., Balkhy H., Johani S., Yousef M.Z., Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East Respiratory Syndrome-coronavirus infection. Ann. Thorac. Med., 2016, Vol. 11, pp. 211-213.

30. He Z., Zhao C., Dong Q., Zhuang H., Song S., Peng G., Dwyer D.E. Effects of Severe Acute Respiratory Syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int. J. Infect., 2005, Vol. 9, pp. 323-330.

31. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T, Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, Vol. 181, pp. 271-280.

32. Ka-fai L.C., Wu H., Yan H., Ma S., Wang L, Zhang M., Tang X., Temperton N.J., Weiss R.A., Brenchley J.M., Douek D.C., Mongkolsapaya J., Tran B.-H., Steve Lin C.-l., Screaton G.R., Hou J.-l., McMichael A.J., Xet X.-N. T cell responses to whole SARS coronavirus in humans. J. Immunol., 2008, Vol. 181, pp. 5490-5500.

33. Kaul D. An overview of coronaviruses including the SARS-2 coronavirus – Molecular biology, epidemiology and clinical implications. Curr. Med. Res. Pract., 2020, Vol. 10, no. 2, pp. 54-64.

34. Keicho N., Itoyama S., Kashiwase K., Phi N.C., Long H.T., Ha L.D., Ban V.V., Hoa B.K., Le Hang N.T., Hijikata M., Sakurada S., Satake M., Tokunaga K., Sasazuki T., Quy T. Association of human leukocyte antigen class II alleles with Severe Acute Respiratory Syndrome in the Vietnamese population. Hum. Immunol., 2009, Vol. 70, pp. 527-531.

35. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R., Mathew D., Baxter A.E., Vella L., Kuthuru O., Apostolidis S., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Bettset M.R. Immunologic perturbations in severe COVID-19/SARS-CoV-2 infection. Version 1. bioRxiv. Preprint, 2020. doi: 10.1101/2020.05.18.101717.

36. Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J. Coronavirus infections and immune responses. J. Med. Virol., 2020, Vol. 92, no. 4, pp. 424-432.

37. Li T., Qiu Z., Zhang L., Han Y., He W., Liu Z., Ma X., Fan H., Lu W., Xie J., Wang H., Deng G., Wang A. Significant changes of peripheral T lymphocyte subsets in patients with Severe Acute Respiratory Syndrome. J. Infect. Dis., 2004, Vol. 189, no. 4, pp. 648-651.

38. Li W., Wong S.K., Li F., Kuhn J.H., Huang I-C., Choe H., Farzan M. Animal origins of the severe Acute Respiratory Syndrome Coronavirus: insight from ACE2-S-Protein interactions. J. Virol., 2006. Vol. 80, no. 9, pp. 4211-4219.

39. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, Vol. 9, no. 4, pp. 1-4.

40. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, Vol. 55, 102763. doi: 10.1016/J.EBIOM.2020.102763.

41. Lui P.-Y., Wong L.-Y. R., Fung C.-L., Siu K.-L., Yeung M.-L., Yuen K.-S., Chan C.-P., Woo P.C.-Y., Yuen K.-Y., Jin D.-Y. Middle East Respiratory Syndrome corona-virus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg. Microbes Infect., 2016, Vol. 5, no. 4, e39. doi: 10.1038/EMI.2016.33.

42. Lu G., Hu Y., Wang Q., Qi J., Gao F., Li Y., Zhang Y., Zhang W., Yuan Y., Bao J., Zhang B., Shi Y., Yan J., Gao G.F. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, 2013, Vol. 500, pp. 227-231.

43. Mazzoni A., Salvati L., Maggi L., Capone M., Vanni A., Spinicci M., Mencarini J., Caporale R., Peruzzi B., Antonelli A., Trotta M., Zammarchi L., Ciani L., Gori L., Lazzeri C., Matucci A., Vultaggio A., Rossi O., Almerigogna F., Parronchi P., Fontanari P., Lavorini F., Peris A., Rossolini G.M., Bartoloni A., Romagnani S., Liotta F., Annunziato F., Cosmi L. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest., 2020, Vol. 130, no. 9, pp. 4694-4703.

44. Ng O.W., Chia A., Tan A.T., Jadi R.S., Leong H.N., Bertoletti A., Tan Y.-J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016, Vol. 34, no. 17, pp. 2008-2014.

45. Ni L., Ye F., Cheng M.-L., Feng Y., Deng Y.-Q., Zhao H., Wei P., Ge J., Gou M.,. Li X., Sun L., Cao T., Wang P., Zhou C., Zhang R., Liang P., Guo H., Wang X., Qin C.-F., Chen F., Dong C. Detection of SARS-CoV-2- specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity, 2020, Vol. 52, no. 6, pp. 971-977.

46. Novel Coronavirus (2019-nCoV) Situation Report – 11. World Health Organisation (January 31, 2020). Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4.

47. Oja A.E., Saris A., Ghandour C.A., Kragten N.A.M., Hogema B.M., Nossent L.M., Heunks A., Cuvalay S.,Slot E., Swaneveld F.H., Vrielink H., Rispens T., van der Schoot E.J.E., van Lier R.A.W., Ten Brinke A., Hombrink P.Divergent SARS-CoV-2-specific T and B cell responses in severe but not mild COVID-19. bioRxiv 2020.06.18.159202. Preprint, 2020. doi: 10.1101/2020.06.18.159202.

48. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L. Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, Vol. 11, no. 1, 1620. doi: 10.1038/s41467-020-15562-9.

49. Panesar N.S. What caused lymphopenia in SARS and how reliable is the lymphokine status in glucocorticoidtreated patients? Med. Hypotheses, 2008, Vol. 71, no. 2, pp. 298-301.

50. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, Vol. 71, pp. 762-768.

51. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., Dhama K., Yatoo M.I., BonillaAldana D.K., Rodriguez-Morales A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez. Med., 2020, Vol. 28, no. 2, pp. 174-184.

52. Rokni M., Ghasemi V., Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev. Med. Virol., 2020, Vol. 30, no. 3, e2107. doi: 10.1002/RMV.2107.

53. Sariol S., Perlman S. Lessons for COVID-19 Immunity from other coronavirus infections. Immunity, 2020, Vol. 53, no. 2, pp. 248-263.

54. Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.-B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic G., Muschiol S., Wullimann D.J., Kammann T., Emgård J., Parrot T., Folkesson E., Rooyackers O., Eriksson L.I., Sönnerborg A., Allander T., Albert J., Nielsen M., Klingström J., Gredmark-Russ S., Björkström N.K., Sandberg J.K., Price D.A., Ljunggren H.-G., Aleman S., Molinska B. COVID-19 study group, robust T cell immunity in convalescent indivi. Kar duals with asymptomatic or mild COVID-19. bioRxiv 2020.06.29.174888. Preprint, 2020. doi: 10.1101/2020.06.29.174888.

55. Shah V.K., Firmal P., Alam A., Ganguly D., Chattopadhyay S. Overview of immune response during SARSCoV-2 infection: Lessons From the Past. Front. Immunol., 2020, Vol. 11, 1949. doi: 10.3389/FIMMU.2020.01949.

56. Shin H.-S., Kim Y., Kim G., Lee J.Y., Jeong I., Joh J.-S., Kim H., Chang E., Sim S.Y., Park J.-S., Lim D.G. Immune responses to Middle East Respiratory Syndrome coronavirus during the acute and convalescent phases of human infection. Clin. Infect. Dis., 2019, Vol. 68, pp. 984-992.

57. Tang F., Quan Y., Xin Z.T., Wrammert J., Ma M.J., Lv H., Wang T.B., Yang H., Richardus J.H., Liu W., Cao W.C. Lack of peripheral memory B cell responses in recovered patients with Severe Acute Respiratory Syndrome: a sixyear follow-up study. J. Immunol., 2011, Vol. 186, pp. 7264-7268.

58. Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev., 2008, Vol. 19, no. 2, pp. 121-132.

59. Thieme C.J., Anft M., Paniskaki K., Blazquez-Navarro A., Doevelaar A., Seibert F., Hoelzer B., Konik M.J., Brenner T., Tempfer C., Watzl C., Dolff S., Dittmer U., Westhoff T.H., Witzke O., Stervbo U., Roch T., Babel N. The SARS-CoV-2 T-cell immunity is directed against the spike, membrane, and nucleocapsid protein and associated with COVID 19 severity. medRxiv 2020.05.13.20100636. Preprint, 2020. doi: 10.1101/2020.05.13.20100636.

60. Ulrich H., Pillat M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem. Cell Rev. Rep., 2020, Vol. 16, no. 3, pp. 434-440.

61. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol., 2020, Vol. 20, no. 5, 277. doi: 10.1038/S41577-020-0305-6.

62. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., Lang C., Xiao Q., Xiao K., Yi Z., Qiang M., Xiang J., Zhang B., Chen Y., Gao C. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br. J. Haematol., 2020, Vol. 189, no. 3, pp. 428-437.

63. Wang K., Chen W., Zhou Y.S., Lian J.-Q., Zhang Z., Du P., Gong L., Zhang Y., Cui H.Y., Geng J.-J., Wang B., Sun X.-X., Wang C.-F., Yang X., Lin P., Deng Y.-Q., Wei D., Yang X.-M., Zhu Y.-M., Zhang K., Zheng Z.-H., Miao J. L., Guo T., Shi Y., Zhang J., Fu L., Wang Q.-Y., Bian H., Zhu P., Chenet Z.-N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv preprint, 2020. doi: 10.1101/2020.03.14.988345.

64. Wang S.F., Chen K.H., Chen M., Li W.Y., Chen Y.J., Tsao C.H., Yen M.-Y., C Huang J., Chen Y.-M. A.Humanleukocyte antigen class i Cw 1502 and Class II DR 0301 genotypes are associated with resistance to Severe Acute Respiratory Syndrome (SARS) infection. Viral Immunol., 2011, Vol. 24, pp. 421-426

65. Wang Y.D., Sin W.Y., Xu G.B., Yang H.H., Wong T.Y., Pang X.W., He X.Y., Zhang H.G., Ng J.N., Cheng C.S., Yu J., Meng L., Yang R.F., Lai S.T., Guo Z.H., Xie Y., Chen W.F. T-cell epitopes in Severe Acute Respiratory Syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J. Virol., 2004, Vol. 78, no. 11, pp. 5612-5618.

66. WHO Director-General’s opening remarks at the media briefing on COVID-19 — 11 March 2020. Available at: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-mediabriefing-on-covid-19---11-march-2020.

67. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. CryoEM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, Vol. 367, pp. 1260-1263.

68. Yan R., Zhang Y., Li Y., Xia L., Guo Y. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science, 2020, Vol. 367, no. 6485, pp. 1444-1448.

69. Yang L.T., Peng H., Zhu Z.L., Li G., Huang Z.T., Zhao Z.X., Koup R.A., Bailer R.T., Wu C.Y. Long-lived effector/central memory T-cell responses to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin. Immunol., 2006, Vol. 120, no. 2, pp. 171-178.

70. Yang Y., Xiong Z., Zhang S., Yan Y., Nguyen J., Ng B., Lu H., Brendese J., Yang F., Wang H., Yang X.F. Bcl – xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem. J., 2005, Vol. 392, no. 1, pp. 135-143.

71. Yaqinuddin A. Cross-immunity between respiratory coronaviruses may limit COVID-19 fatalities. Med. Hypotheses, 2020, Vol. 144, 110049. doi: 10.1016/J.MEHY.2020.110049.

72. Yuan X., Huang W., Ye B., Chen C., Huang R., Wu F., Wei Q., Zhang W., Hu J. Changes of hematological and immunological parameters in COVID-19 patients. Int. J. Hematol., 2020, Vol. 112, no. 4, pp 553-559.

73. Zhao J., Zhao J., Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in Severe Acute Respiratory Syndrome coronavirus-infected mice. J. Virol., 2010, Vol. 84, pp. 9318-9325

74. Zhao J., Li K., Wohlford-Lenane C., Agnihothram S.S., Fett C., Zhao J., Gale M.J. Jr., Baric R.S., Enjuanes L., Gallagher T., McCray P.B. Perlman S. Rapid generation of a mouse model for Middle East Respiratory Syndrome. Proc. Natl. Acad. Sci. USA., 2014, Vol. 111, no. 13, pp. 4970-4975.

75. Zhao J., Zhao J., Mangalam А.К., Channappanavar R., Fett C., D.K., Agnihothram S., Baric R.S., David C.S., Perlman S. Airway memory CD4+T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity, 2016, Vol. 44, no. 6, pp. 1379-1391.

76. Zhao J., Alshukairi A.N., Baharoon S.A., Ahmed W.A., Bokhari A.A., Nehdi A.M., Layqah L.A., Alghamdi M.G., AI Gethamy M.M., Dada A.M., Khalid I., Boujelal M., Al Johani S.M., Vogel L., Subbarao K., Mangalam A., Wu C., Ten Eyck P., Perlman S., Zhao J. Recovery from the Middle East Respiratory Syndrome is associated with antibody and T-cell responses. Sci. Immunol., 2017, Vol. 2, eaan5393. doi: 10.1126/SCIIMMUNOL.AAN5393.

77. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol., 2020, Vol. 17, no. 5, pp. 533-535.

78. Zhu Z., Lian X., Su X., Wu W., Marraro G.A., From Z.Y. SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, Vol. 21, 224. doi: 10.1186/S12931-020-01479-W.


Supplementary files

Review

For citations:


Ivanova I.A., Omelchenko N.D., Filippenko A.V., Trufanova A.A., Noskov A.K. Role of the cellular immunity in the formation of the immune response in coronavirus infections. Medical Immunology (Russia). 2021;23(6):1229-1238. (In Russ.) https://doi.org/10.15789/1563-0625-ROT-2302

Views: 1352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)