Expression and polymorphism of lTLR4 receptors in pathogenesis of chronic obstructive pulmonary disease: a modern view
https://doi.org/10.15789/1563-0625-EAP-2147
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible or partially reversible obstruction of the bronchial tree. Currently, there are many proven links in the COPD etiopathogenesis, among which a pivotal role is assigned to the value of the hyperergic inflammatory reaction in response to inhalation of various harmful substances (tobacco smoke, industrial pollutants, etc.). The number of macrophages, neutrophils, lymphocytes increases in the lungs of COPD patients, and these cells secrete a fairly wide range of inflammatory mediators. Bacterial colonization of the airways is one of the key features in COPD pathogenesis leading to persistent or chronic stimulation of immune cells through Tolllike receptors (TLR), which perceive the pathogen-associated molecular patterns (PAMPs).
This article provides a review of literature concerning modern concepts of the role of Toll-like receptors expression and polymorphism, in particular, TLR4, in pathogenesis of COPD. TLR4 is a member of the Tolllike receptor family that plays a fundamental role in pathogen identification and innate immune activation. By recognizing the pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, TLRs mediate the production of cytokines necessary for the development of effective immunity. Different TLRs exhibit distinct expression patterns. This receptor is most abundantly expressed in placenta and in the myelomonocytic leukocyte subpopulations. E.g., Di Stefano A. et al. (2017), determined immunohistochemically the expression levels of TLR2, TLR4, TLR9, NOD1, NOD2, CD14, Toll-interleukin-1-receptor domain containing adapter protein (TIRAP) and interleukin-1-receptor-associated phosphokinases (IRAK1 and IRAK4) in bronchial mucosa of patients with stable COPD of varying severity. It was found that TLR4 expression of the bronchial epithelium positively correlated with degree of obstruction and CD4+ and CD8+T cell contents. Stimulation of TLR4 increases cytokine production, which may be a relevant mechanism by which bacteria cause excessive inflammation in COPD patients. The degree of TLR4 involvement into COPD pathogenesis requires more detailed study in future, in order to determine the main mechanisms for emerging inflammatory response in the airways. This review article is part of a research grant project to study pro-inflammatory response to endotoxin of Gram-negative flora in COPD pathogenesis (State registration number – АААА-А19-119122390040-2).
About the Authors
V. A. BeloglazovRussian Federation
PhD, MD (Medicine), Professor, Head, Department of Internal Medicine No. 2, S. Georgievsky Medical Academy,
Simferopol, Republic of Crimea
I. A. Yatskov
Russian Federation
Assistant, Department of Internal Medicine No. 2, S. Georgievsky Medical Academy,
Simferopol, Republic of Crimea
Rean Hayrievna Useinova
Russian Federation
Student, Department of Internal Medicine No. 2, S. Georgievsky Medical Academy,
Simferopol, Republic of Crimea
References
1. Britton W.J., Fernando S.L., Saunders B.M., Sluyter R., Wiley J.S. The genetic control of susceptibility to Mycobacterium tuberculosis. Decoding the genomic control of immune reactions. Novartis Foundation Symposium, 2007, Vol. 281, pp. 79-92.
2. Brusselle G.G., Joos G.F., Bracke K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, Vol. 378, рр. 1015-1026.
3. Dai Y., Zhang Z., Xu L., Shang Y., Lu R., Chen J. Genetic polymorphisms of IL17A, TLR4 and P2RX7 and associations with the risk of chronic obstructive pulmonary disease. Mutat. Res. Gen. Toxicol. Environ. Mutagen., 2018, Vol. 829-830, pp. 1-5.
4. Di Stefano A., Ricciardolo F.L.M., Caramori G. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur. Respir. J., 2017, Vol. 49, no. 5, 1602006. doi: 10.1183/13993003.02006-2016.
5. Freeman C.M., Martinez F.J., Han M.K. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir. Res., 2013, Vol. 14, no. 1, 13. doi: 10.1186/1465-9921-14-13.
6. Fukata M., Vamadevan A.S., Abreu M.T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol., 2009, Vol. 21, pp. 242-253.
7. Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A., Thomas G., Philpott D.J., Sansonetti P.J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem., 2003, Vol. 278: pp. 8869-8872.
8. Häcker H., Vabulas R. M., Takeuchi O., Hoshino K., Akira S., Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med., 2000, Vol. 192, no. 4, pp. 595-600.
9. Ito M., Hanaoka M., Droma Y., Kobayashi N., Yasuo M., Kitaguchi Y., Horiuchi T., Ikegawa K., Katsuyama Y., Kubo K., Ota M. The association of Toll-like receptor 4 gene polymorphisms with the development of emphysema in Japanese subjects: a case control study. BMC Res. Notes, 2012, Vol. 5, 36. doi: 10.1186/1756-0500-5-36.
10. Kawai T., Adachi O., Ogawa T., Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999, Vol. 11, pp. 115-122.
11. Li H., Yang T., Li F.-Y., Ning Q., Sun Z.-M. TLR4 overexpression inhibits endothelial PAS domain-containing protein 1 expression in the lower respiratory tract of patients with chronic COPD. Cell. Physiol. Biochem., 2016, Vol. 39, pp. 685-692.
12. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 2003, Vol. 198, pp. 513-520.
13. Marin L., Colombo P., Bebawy M., Young P.M., Traini D. Chronic obstructive pulmonary disease: pathophysiology, current methods of treatment and the potential for simvastatin in disease management. Expert Opin. Drug Deliv., 2011, Vol. 8, no. 9, pp. 1205-1220.
14. Nadigel J., Préfontaine D., Baglole C.J., Maltais F., Bourbeau J., Eidelman D.H., Hamid Q. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8+ T cells in chronic obstructive pulmonary disease. Respir. Res., 2011, Vol. 12, no. 1, 149. doi: 10.1186/1465-9921-12-149.
15. Pauwels R., Rabe K. Burden and clinical features of chronicobstructive pulmonary disease (COPD). Lancet, 2004, Vol. 364, no. 9434, рр. 613-620.
16. Putra A.C., Eguchi H., Lee K.L., Yamane Y., Gustine E., Isobe T., Nishiyama M., Hiyama K., Poellinger L., Tanimoto K. The A Allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung cancer. PLoS ONE, 2015, Vol. 10, no. 8, e0134496. doi: 10.1371/journal.pone.0134496.
17. Ranoa D.R., Kelley S.L., Tapping R.I. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J. Biol. Chem., 2013, Vol. 288, no. 14, pp. 9729-9741.
18. Rawłuszko-Wieczorek A.A., Horbacka K., Krokowicz P., Misztal M., Jagodziński P.P. Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol. Cancer Res., 2014, Vol. 12, no. 8, pp. 1112-1127.
19. Reséndiz-Hernández J.M., Falfán-Valencia R. Genetic polymorphisms and their involvement in the regulation of the inflammatory response in asthma and COPD. Adv. Clin. Exp. Med., 2018, Vol. 27, no. 1, pp. 125-133.
20. Schnare M., Holt A.C., Takeda K., Akira S., Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol., 2000, Vol. 10, no. 18, pp. 1139-1142.
21. Sinden N.J., Stockley R.A. Systemic inflammation and comorbidity in COPD: aresultof “overspill” of inflammatory mediators fromthe lungs. Review of the evidence. Thorax, 2010, Vol. 65, no. 10, pp. 930-936.
22. Takeda K., Akira S. Toll-like receptors in innate immunity. Int. Immunol., 2005, Vol. 17, no. 1, pp. 1-14.
23. Takeda N., Maemura K., Imai Y., Harada T., Kawanami D., Nojiri T., Manabe I., Nagai R. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ. Res., 2004, Vol. 95, no. 2, pp. 146-153.
24. Takeuchi O., Takeda K., Hoshino K., Adachi O., Ogawa T., Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol., 2000, Vol. 12, no. 1, pp. 113-117.
25. Vestbo J., Hurd S.S., Agusti A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., Stockley R.A., Sin D.D., Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2013, Vol. 187, no. 4, pp. 347-365.
26. World Health Organization, the top 10 causes of death, 2014. Available at: http://www.who.int/mediacentre/factsheets/fs310/en/ (Accessed 14 February 2015).
27. Wouters E.F., Reynaert N.L., Dentener M.A., Vernooy J.H. Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: is there a connection? Proc. Am. Thorac. Soc., 2009, Vol. 6, no. 8, pp. 638-647.
28. Yamamoto M., Sato S., Hemmi H., Sanjo H., Uematsu S., Kaisho T., Hoshino K., Takeuchi O., Kobayashi M., Fujita T., Takeda K., Akira S. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, Vol. 420, no. 6913, pp. 324–329.
29. Yamasaki K., Eeden S. Lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int. J. Mol. Sci., 2018, Vol. 19, no. 2. 582. doi: 10.3390/ijms19020582.
30. Yanagisawa S., Ichinose M. Definition and diagnosis of asthma-COPD overlap (ACO). Allergol. Int., 2018, Vol. 67, no. 2, pp. 172-178.
31. Yoo S., Takikawa S., Geraghty P., Argmann C., Campbell J., Lin L., Huang T., Tu Z., Foronjy R.F., Spira A., Schadt E.E., Powell C.A., Zhu J. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet., 2015, Vol. 11, no. 1, e1004898. doi: 10.1371/journal.pgen.1004898.
32. Zhen Q., Liu J.F., Liu J.B., Wang R.F., Chu W.W., Zhang Y.X., Tan G. L., Zhao X.J., Lv B.L. Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Cancer Biol. Ther., 2015, Vol. 16, no. 4, pp. 549-557.
Supplementary files
Review
For citations:
Beloglazov V.A., Yatskov I.A., Useinova R.H. Expression and polymorphism of lTLR4 receptors in pathogenesis of chronic obstructive pulmonary disease: a modern view. Medical Immunology (Russia). 2021;23(2):231-236. (In Russ.) https://doi.org/10.15789/1563-0625-EAP-2147