Экспрессия и полиморфизм рецепторов TLR4 в патогенезе хронической обструктивной болезни легких: современный взгляд
https://doi.org/10.15789/1563-0625-EAP-2147
Аннотация
Хроническая обструктивная болезнь легких (ХОБЛ) – прогрессирующее заболевание, характеризующееся необратимой или частично обратимой обструкцией бронхиального дерева. В настоящее время существует множество научно подтвержденных звеньев этиопатогенеза ХОБЛ, среди которых основополагающая роль отводится значению гиперергической воспалительной реакции в ответ на вдыхание различных вредных веществ (табачный дым, промышленные поллютанты и др.). В легких больных ХОБЛ увеличивается количество макрофагов, нейтрофилов, лимфоцитов, причем эти клетки выделяют достаточно широкий спектр медиаторов воспаления. Одной из ключевых особенностей этиопатогенеза ХОБЛ является бактериальная колонизация дыхательных путей, приводящая к персистирующей или хронической стимуляции иммунных клеток через Toll-подобные рецепторы (TLR), которые воспринимают патоген-ассоциированные молекулярные паттерны (PAMPs).
В данной статье приведен литературный обзор современных представлений о роли экспрессии и полиморфизма Toll-подобных рецепторов, в частности TLR4, в патогенезе ХОБЛ. TLR4 является членом семейства Toll-подобных рецепторов, которые играют фундаментальную роль в идентификации патогенов и активации врожденного иммунитета. Распознавая патоген-ассоциированные молекулярные паттерны (PAMPs), которые экспрессируются на инфекционных агентах, TLR опосредуют выработку цитокинов, необходимых для развития эффективного иммунитета. Различные TLR демонстрируют различные паттерны экспрессии. Этот рецептор наиболее обильно экспрессируется в плаценте и в миеломоноцитарной субпопуляции лейкоцитов. В исследовании Di Stefano A. и соавт. (2017) иммуногистохимически были определены уровни экспрессии TLR2, TLR4, TLR9, NOD1, NOD2, CD14, Toll-интерлейкин-1-рецепторного домена, содержащего адапторный белок (TIRAP) и интерлейкин-1-рецептор-ассоциированных фосфокиназ (IRAK1 и IRAK4) в слизистой оболочке бронхов пациентов со стабильным течением ХОБЛ различной степени тяжести. Стало известно, что экспрессия TLR4 бронхиального эпителия положительно коррелировала со степенью обструкции и содержанием CD4+ и CD8+ клеток. Стимуляция TLR4 усиливает выработку цитокинов, что может быть релевантным механизмом, с помощью которого бактерии вызывают чрезмерное воспаление у пациентов с ХОБЛ. Вопрос степени вовлеченности TLR4 в патогенез ХОБЛ требует дальнейшего более подробного изучения с целью определения основных механизмов формирования воспали тельного ответа в дыхательных путях. Данная обзорная статья является частью грантового проекта по изучению провоспалительного ответа на эндотоксин грамотрицательной флоры в патогенезе ХОБЛ (Номер государственного учета НИОКТР – АААА-А19-119122390040-2).
Об авторах
В. А. БелоглазовРоссия
д.м.н., профессор, заведующий кафедрой внутренней медицины № 2, Медицинская академия имени С.И. Георгиевского,
г. Симферополь, Республика Крым
И. А. Яцков
Россия
ассистент кафедры внутренней медицины № 2, Медицинская академия имени С.И. Георгиевского,
295491, Республика Крым, г. Симферополь, пгт Аэрофлотский, ул. Мальченко, 7, кв. 28
Р. Х. Усеинова
Россия
студентка кафедры внутренней медицины № 2, Медицинская академия имени С.И. Георгиевского,
г. Симферополь, Республика Крым
Список литературы
1. Britton W.J., Fernando S.L., Saunders B.M., Sluyter R., Wiley J.S. The genetic control of susceptibility to Mycobacterium tuberculosis. Decoding the genomic control of immune reactions. Novartis Foundation Symposium, 2007, Vol. 281, pp. 79-92.
2. Brusselle G.G., Joos G.F., Bracke K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, Vol. 378, рр. 1015-1026.
3. Dai Y., Zhang Z., Xu L., Shang Y., Lu R., Chen J. Genetic polymorphisms of IL17A, TLR4 and P2RX7 and associations with the risk of chronic obstructive pulmonary disease. Mutat. Res. Gen. Toxicol. Environ. Mutagen., 2018, Vol. 829-830, pp. 1-5.
4. Di Stefano A., Ricciardolo F.L.M., Caramori G. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur. Respir. J., 2017, Vol. 49, no. 5, 1602006. doi: 10.1183/13993003.02006-2016.
5. Freeman C.M., Martinez F.J., Han M.K. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir. Res., 2013, Vol. 14, no. 1, 13. doi: 10.1186/1465-9921-14-13.
6. Fukata M., Vamadevan A.S., Abreu M.T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol., 2009, Vol. 21, pp. 242-253.
7. Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A., Thomas G., Philpott D.J., Sansonetti P.J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem., 2003, Vol. 278: pp. 8869-8872.
8. Häcker H., Vabulas R. M., Takeuchi O., Hoshino K., Akira S., Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med., 2000, Vol. 192, no. 4, pp. 595-600.
9. Ito M., Hanaoka M., Droma Y., Kobayashi N., Yasuo M., Kitaguchi Y., Horiuchi T., Ikegawa K., Katsuyama Y., Kubo K., Ota M. The association of Toll-like receptor 4 gene polymorphisms with the development of emphysema in Japanese subjects: a case control study. BMC Res. Notes, 2012, Vol. 5, 36. doi: 10.1186/1756-0500-5-36.
10. Kawai T., Adachi O., Ogawa T., Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999, Vol. 11, pp. 115-122.
11. Li H., Yang T., Li F.-Y., Ning Q., Sun Z.-M. TLR4 overexpression inhibits endothelial PAS domain-containing protein 1 expression in the lower respiratory tract of patients with chronic COPD. Cell. Physiol. Biochem., 2016, Vol. 39, pp. 685-692.
12. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 2003, Vol. 198, pp. 513-520.
13. Marin L., Colombo P., Bebawy M., Young P.M., Traini D. Chronic obstructive pulmonary disease: pathophysiology, current methods of treatment and the potential for simvastatin in disease management. Expert Opin. Drug Deliv., 2011, Vol. 8, no. 9, pp. 1205-1220.
14. Nadigel J., Préfontaine D., Baglole C.J., Maltais F., Bourbeau J., Eidelman D.H., Hamid Q. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8+ T cells in chronic obstructive pulmonary disease. Respir. Res., 2011, Vol. 12, no. 1, 149. doi: 10.1186/1465-9921-12-149.
15. Pauwels R., Rabe K. Burden and clinical features of chronicobstructive pulmonary disease (COPD). Lancet, 2004, Vol. 364, no. 9434, рр. 613-620.
16. Putra A.C., Eguchi H., Lee K.L., Yamane Y., Gustine E., Isobe T., Nishiyama M., Hiyama K., Poellinger L., Tanimoto K. The A Allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung cancer. PLoS ONE, 2015, Vol. 10, no. 8, e0134496. doi: 10.1371/journal.pone.0134496.
17. Ranoa D.R., Kelley S.L., Tapping R.I. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J. Biol. Chem., 2013, Vol. 288, no. 14, pp. 9729-9741.
18. Rawłuszko-Wieczorek A.A., Horbacka K., Krokowicz P., Misztal M., Jagodziński P.P. Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol. Cancer Res., 2014, Vol. 12, no. 8, pp. 1112-1127.
19. Reséndiz-Hernández J.M., Falfán-Valencia R. Genetic polymorphisms and their involvement in the regulation of the inflammatory response in asthma and COPD. Adv. Clin. Exp. Med., 2018, Vol. 27, no. 1, pp. 125-133.
20. Schnare M., Holt A.C., Takeda K., Akira S., Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol., 2000, Vol. 10, no. 18, pp. 1139-1142.
21. Sinden N.J., Stockley R.A. Systemic inflammation and comorbidity in COPD: aresultof “overspill” of inflammatory mediators fromthe lungs. Review of the evidence. Thorax, 2010, Vol. 65, no. 10, pp. 930-936.
22. Takeda K., Akira S. Toll-like receptors in innate immunity. Int. Immunol., 2005, Vol. 17, no. 1, pp. 1-14.
23. Takeda N., Maemura K., Imai Y., Harada T., Kawanami D., Nojiri T., Manabe I., Nagai R. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ. Res., 2004, Vol. 95, no. 2, pp. 146-153.
24. Takeuchi O., Takeda K., Hoshino K., Adachi O., Ogawa T., Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol., 2000, Vol. 12, no. 1, pp. 113-117.
25. Vestbo J., Hurd S.S., Agusti A.G., Jones P.W., Vogelmeier C., Anzueto A., Barnes P.J., Fabbri L.M., Martinez F.J., Nishimura M., Stockley R.A., Sin D.D., Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2013, Vol. 187, no. 4, pp. 347-365.
26. World Health Organization, the top 10 causes of death, 2014. Available at: http://www.who.int/mediacentre/factsheets/fs310/en/ (Accessed 14 February 2015).
27. Wouters E.F., Reynaert N.L., Dentener M.A., Vernooy J.H. Systemic and local inflammation in asthma and chronic obstructive pulmonary disease: is there a connection? Proc. Am. Thorac. Soc., 2009, Vol. 6, no. 8, pp. 638-647.
28. Yamamoto M., Sato S., Hemmi H., Sanjo H., Uematsu S., Kaisho T., Hoshino K., Takeuchi O., Kobayashi M., Fujita T., Takeda K., Akira S. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, Vol. 420, no. 6913, pp. 324–329.
29. Yamasaki K., Eeden S. Lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int. J. Mol. Sci., 2018, Vol. 19, no. 2. 582. doi: 10.3390/ijms19020582.
30. Yanagisawa S., Ichinose M. Definition and diagnosis of asthma-COPD overlap (ACO). Allergol. Int., 2018, Vol. 67, no. 2, pp. 172-178.
31. Yoo S., Takikawa S., Geraghty P., Argmann C., Campbell J., Lin L., Huang T., Tu Z., Foronjy R.F., Spira A., Schadt E.E., Powell C.A., Zhu J. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet., 2015, Vol. 11, no. 1, e1004898. doi: 10.1371/journal.pgen.1004898.
32. Zhen Q., Liu J.F., Liu J.B., Wang R.F., Chu W.W., Zhang Y.X., Tan G. L., Zhao X.J., Lv B.L. Endothelial PAS domain-containing protein 1 confers TKI-resistance by mediating EGFR and MET pathways in non-small cell lung cancer cells. Cancer Biol. Ther., 2015, Vol. 16, no. 4, pp. 549-557.
Дополнительные файлы
Рецензия
Для цитирования:
Белоглазов В.А., Яцков И.А., Усеинова Р.Х. Экспрессия и полиморфизм рецепторов TLR4 в патогенезе хронической обструктивной болезни легких: современный взгляд. Медицинская иммунология. 2021;23(2):231-236. https://doi.org/10.15789/1563-0625-EAP-2147
For citation:
Beloglazov V.A., Yatskov I.A., Useinova R.H. Expression and polymorphism of lTLR4 receptors in pathogenesis of chronic obstructive pulmonary disease: a modern view. Medical Immunology (Russia). 2021;23(2):231-236. (In Russ.) https://doi.org/10.15789/1563-0625-EAP-2147