Preview

Медицинская иммунология

Расширенный поиск

Мезенхимные стволовые клетки: краткий обзор классических представлений и новых факторов остеогенной дифференцировки

https://doi.org/10.15789/1563-0625-MSC-2128

Полный текст:

Аннотация

Молекулярно-генетические механизмы, сигнальные пути, условия, факторы и маркеры остеогенной дифференцировки мезенхимных стволовых клеток (МСК) активно изучаются, несмотря на то, что считаются одними из наиболее исследованных направлений в области клеточных технологий. Во многом это обусловлено накопившимися противоречиями в, казалось бы, классических знаниях, а также постоянным обновлением результатов в анализируемой области. В связи с этим мы сосредоточили внимание на основных классических представлениях и некоторых новых факторах и механизмах, оказывающих заметное регуляторное влияние на дифференцировочный потенциал постнатальных МСК. В обзоре рассматривается значение источника получения МСК для реализации их дифференцировочного потенциала, роль клеточного микроокружения. Освещаются вопросы классификации, терминологии и функциональной активности МСК из различных источников. Описаны молекулярно-генетические факторы и сигнальные пути дифференцировки МСК; рассмотрены как классические участники остеогенеза с описанием их новых функциональных свойств, так и новые молекулы, способные участвовать в процессах костеобразования. Отмечено, что данные об основных генах, задействованных в процессе остеогенеза, крайне противоречивы. Проанализирован паракринный потенциал МСК в механизмах регенерации тканей; отмечено важнейшее значение воспаления в остеогенезе, в частности присутствие в очаге повреждения воспалительных цитокинов и хемокинов, продуцируемых не только клетками микроокружения, но и клетками крови, в том числе мононуклеарными лейкоцитами, мигрирующими в очаг повреждения. Важная роль в настоящем обзоре отведена рассмотрению биомеханических сигналов и особенностей влияния конформационных изменений клеточного цитоскелета (формы клетки) на дифференцировку МСК, так как морфологические особенности клеток и структура цитоскелета модулируется взаимодействием клеточной поверхности с факторами окружающей среды, включая гидростатическое давление, поток жидкости, нагрузка на сжатие/растяжение. Представлены данные о том, что эластичность экстрацеллюлярного матрикса является одним из определяющих факторов клеточной дифференцировки. Сделано заклю чение о необходимости перехода от точечного изучения эффектов отдельных генов к множественным измерениям генно-регуляторного профиля и биомолекул, ответственных за реализацию многочисленных, полностью не изученных остеогенных факторов эндогенного и экзогенного происхождения. Одним из краеугольных направлений в будущих (эпи)генетических исследованиях будет решение вопроса о том, реализуются ли остеомодулирующие эффекты через специфические сигнальные пути и/или имеется перекрестный сигналинг с известными генами остеогенной дифференцировки МСК.

Об авторах

К. А. Юрова
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И.Канта»
Россия

к.м.н., научный сотрудник,

г. Калининград



Е. С. Мелащенко
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И. Канта»

младший научный сотрудник,

г. Калининград



О. Г. Хазиахматова
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И. Канта»

к.б.н., научный сотрудник,

г. Калининград



В. В. Малащенко
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И.Канта»

научный сотрудник,

г. Калининград



О. Б. Мелащенко
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И.Канта»

 научный сотрудник,

г. Калининград



Е. О Шунькин
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И.Канта»

младший научный сотрудник,

г. Калининград



И. К. Норкин
ФГАОУ ВО «Балтийский федеральный университет имени И. Канта»

аспирант медицинского института,

г. Калининград



И. А. Хлусов
Центр иммунологии и клеточных биотехнологий ФГАОУ ВО «Балтийский федеральный университет имени И. Канта»; ФГБОУ ВО «Сибирский государственный медицинский университет» Министерства здравоохранения РФ; ФГАОУ ВО «Национальный исследовательский Томский политехнический университет»

д.м.н., главный научный сотрудник, г. Калининград;

профессор кафедры морфологии и общей патологии, г. Томск;

профессор Исследовательской школы химических и биомедицинских технологий, г. Томск



Л. С. Литвинова
Балтийский федеральный университет ФГАОУ ВО «Балтийский федеральный университет имени И. Канта»

д.м.н., директор Центра иммунологии и клеточных биотехнологий 

236000, г. Калининград, ул. Гайдара, 6 (каб. 302)



Список литературы

1. Юрова К.А., Хазиахматова О.Г., Малащенко В.В., Норкин И.К., Иванов П.А., Хлусов И.А., Шунькин Е.О., Тодосенко Н.М., Мелащенко Е.С., Литвинова Л.С. Клеточно-молекулярные аспекты воспаления, ангиогенеза и остеогенеза. Краткий обзор // Цитология, 2020. № 62. С. 305-315.

2. Alge D.L., Zhou D., Adams L.L., Wyss B.K., Shadday M.D., Woods E.J. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J. Tissue Eng. Regen. Med., 2010, Vol. 4, no. 1, pp. 73-81.

3. Alliston T., Choy L., Ducy P., Karsenty G., Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J., 2001, Vol. 20, no. 9, pp. 2254-2272.

4. Amati E., Sella S., Perbellini O., Alghisi A., Bernardi M., Chieregato K. Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res. Ther., 2017, Vol. 8, 14. doi: 10.1186/s13287-016-0465-2.

5. Appaix F., Nissou M.-F., van der Sanden B., Dreyfus M., Berger F., Issartel J.-P. Brain mesenchymal stem cells: the other stem cells of the brain? World J. Stem Cells., 2014, Vol. 6, no. 2, pp. 134-143.

6. Ardeshirylajimi A., Mossahebi-Mohammadi M., Vakilian S., Langroudi L., Seyedjafari E., Atashi A. Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramic-coated electrospun poly (L-lactide) nanofibres. Cell Prolif., 2015, Vol. 48, no. 1, pp. 47-58.

7. Arron J.R., Choi Y. Bone versus immune system. Nature, 2000, Vol. 408, no. 6812, pp. 535-536.

8. Baker N., Sohn J., Tuan R.S. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/ Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Stem Cell Res. Ther., 2015, Vol. 6, 238. doi: 10.1186/s13287-015-0225-8.

9. Bershadsky A.D., Balaban N.Q., Geiger B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol., 2003, Vol. 19, pp. 677-695.

10. Bialek P., Kern B., Yang X., Schrock M., Sosic D., Hong N. A twist code determines the onset of osteoblast differentiation. Dev. Cell, 2004, Vol. 6, no. 3, pp. 423-435.

11. Bieback K., Netsch P. Isolation, Culture, and characterization of human umbilical cord blood-derived mesenchymal stromal cells. Methods Mol. Biol. Clifton N.J., 2016, Vol. 1416, pp. 245-258.

12. Bourin P., Bunnell B.A., Casteilla L., Dominici M., Katz A.J., March K.L. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 2013, Vol. 15, no. 6, pp. 641-648.

13. Brennan M.A., Renaud A., Guilloton F., Mebarki M., Trichet V., Sensebé L. Inferior In vivo osteogenesis and superior angiogenesis of human adipose-derived stem cells compared with bone marrow-derived stem cells cultured in xeno-free conditions. Stem Cells Transl. Med., 2017, Vol. 6, no. 12, pp. 2160-2172.

14. Brouhard G.J., Rice L.M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol., 2018, Vol. 19, no. 7, pp. 451-463.

15. Bryington M., Mendonça G., Nares S., Cooper L.F. Osteoblastic and cytokine gene expression of implantadherent cells in humans. Clin. Oral Implants Res., 2014, Vol. 25, no. 1, pp. 52-58.

16. Charoenpanich A., Wall M.E., Tucker C.J., Andrews D.M.K., Lalush D.S., Dirschl D.R. Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors. Tissue Eng. Part A, 2014, Vol. 20, no. 1-2, pp. 67-78.

17. Charoenpanich A., Wall M.E., Tucker C.J., Andrews D.M.K., Lalush D.S., Loboa E.G. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng. Part A, 2011, Vol. 17, no. 21-22, pp. 2615-2627.

18. Choi W.Y., Jeon H.G., Chung Y., Lim J.J., Shin D.H., Kim J.M. Isolation and characterization of novel, highly proliferative human CD34/CD73-double-positive testis-derived stem cells for cell therapy. Stem Cells Dev., 2013, Vol. 22, no. 15, pp. 2158-2173.

19. Cui C.B., Cooper L.F., Yang X., Karsenty G., Aukhil I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell. Biol., 2003, Vol. 23, no. 3, pp. 1004-1013.

20. Curtis A., Wilkinson C. Topographical control of cells. Biomaterials, 1997, Vol. 18, no. 24, pp. 1573-1583.

21. Curtis A.S., Varde M. Control of cell behavior: topological factors. J. Natl. Cancer Inst., 1964, Vol. 33, pp. 15-26.

22. da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci., 2006, Vol. 119, no. 11, pp. 2204-2213.

23. Dalby M.J., Riehle M.O., Sutherland D.S., Agheli H., Curtis A.S.G. Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur. Cell Mater., 2005, Vol. 9, pp. 1-8.

24. de la Riva B., Sánchez E., Hernández A., Reyes R., Tamimi F., López-Cabarcos E. Local controlled release of VEGF and PDGF from a combined brushite-chitosan system enhances bone regeneration. J. Control. Release, 2010, Vol. 143, no. 1, pp. 45-52.

25. Ding J., Ghali O., Lencel P., Broux O., Chauveau C., Devedjian J.C. TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci., 2009, Vol. 84, no. 15-16, pp. 499-504.

26. Dodson M.V., Hausman G.J., Guan L., Du M., Rasmussen T.P., Poulos S.P. Skeletal muscle stem cells from animals I. Basic cell biology. Int. J. Biol. Sci., 2010, Vol. 6, no. 1, pp. 465-744.

27. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, Vol. 8, no. 4, pp. 315-317.

28. Ducy P., Schinke T., Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science, 2000, Vol. 289, no. 5484, pp. 1501-1504.

29. Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M. Role of YAP/TAZ in mechanotransduction. Nature, 2011, Vol. 474, no. 7350, pp. 179-183.

30. Engler A.J., Sen S., Sweeney H.L., Discher D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, Vol. 126, no. 4, pp. 677-689.

31. Ermis M., Antmen E., Hasirci V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact. Mater., 2018, Vol. 3, no. 3, pp. 355-369.

32. Fan T., Qu R., Yu Q., Sun B., Jiang X., Yang Y. Bioinformatics analysis of the biological changes involved in the osteogenic differentiation of human mesenchymal stem cells. J. Cell. Mol. Med., 2020, Vol. 24, no. 14, pp. 7968-7978.

33. Feister H.A., Onyia J.E., Miles R.R., Yang X., Galvin R., Hock J.M. The expression of the nuclear matrix proteins NuMA, topoisomerase II-alpha, and -beta in bone and osseous cell culture: regulation by parathyroid hormone. Bone, 2000, Vol. 26, pp. 227-234.

34. Feister H.A., Swartz D., Odgren P.R., Holden J., Hock J.M., Onyia J. Topoisomerase II expression in osseous tissue. J. Cell. Biochem., 1997, Vol. 67, no. 4, pp. 451-465.

35. Gerstenfeld L.C., Cho T.J., Kon T., Aizawa T., Cruceta J., Graves B.D. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs, 2001, Vol. 169, no. 3, pp. 285-294.

36. Gibon E., Lu L., Goodman S.B. Aging, inflammation, stem cells, and bone healing. Stem Cell Res. Ther., 2016, Vol. 7, 44. doi: 10.1186/s13287-016-0300-9.

37. Gnecchi M. Mesenchymal Stem Cells: Methods and Protocols. 2nd edition. Humana Press, 2016.

38. Granéli C., Thorfve A., Ruetschi U., Brisby H., Thomsen P., Lindahl A. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res., 2014, Vol. 12, no. 1, pp. 153-165.

39. Grassel S., Ahmed N. Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. Front. Biosci., 2007, Vol. 12, pp. 4946-4956.

40. Greenblatt M.B., Shim J.-H. Osteoimmunology: a brief introduction. Immune Netw., 2013, Vol. 13, no. 4, pp. 111-115.

41. Gu K., Zhang L., Jin T., Rutherford R.B. Identification of potential modifiers of Runx2/Cbfa1 activity in C2C12 cells in response to bone morphogenetic protein-7. Cells Tissues Organs, 2004, Vol. 176, no. 1-3, pp. 28-40.

42. Gurkan U.A., Akkus O. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng., 2008, Vol. 36, no. 12, pp. 1978-1991.

43. Hart D.A. Why mesenchymal stem/progenitor cell heterogeneity in specific environments? Implications for tissue engineering applications following injury or degeneration of connective tissues. J. Biomed. Sci. Eng., 2014, Vol. 7, 526. doi: 10.4236/jbise.2014.78054.

44. He N., Zhang L., Cui J., Li Z. Bone marrow vascular niche: home for hematopoietic stem cells. Bone Marrow Res., 2014, 128436. doi: 10.1155/2014/128436.

45. Heo J.S., Choi Y., Kim H.-S., Kim H.O. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med., 2016, Vol. 37, no. 1, pp.115-125.

46. Herzog E.L., Chai L., Krause D.S. Plasticity of marrow-derived stem cells. Blood, 2003, Vol. 102, no. 10, pp. 3483-3493.

47. Hojo H., Chung U.-I., Ohba S. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen. Ther., 2017, Vol. 6, pp. 100-107.

48. Holzwarth C., Vaegler M., Gieseke F., Pfister S.M., Handgretinger R., Kerst G. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol., 2010, Vol. 11, 11. DOI: 10.1186/1471-2121-11-11.

49. Hong J.-H., Hwang E.S., McManus M.T., Amsterdam A., Tian Y., Kalmukova R. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 2005, Vol. 309, no. 5737, pp. 1074-1078.

50. Huebsch N., Arany P.R., Mao A.S., Shvartsman D., Ali O.A., Bencherif S.A. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater., 2010, Vol. 9, no. 6, pp. 518-526.

51. Hung B.P., Hutton D.L., Kozielski K.L., Bishop C.J., Naved B., Green J.J. Platelet-derived growth factor bb enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells Dayt Ohio, 2015, Vol. 33, no. 9, pp. 2773-2784.

52. Hutton D.L., Moore E.M., Gimble J.M., Grayson W.L. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng. Part A, 2013, Vol. 19, no. 17-18, pp. 2076-2086.

53. Introna M., Lucchini G., Dander E., Galimberti S., Rovelli A., Balduzzi A. Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol. Blood Marrow Transplant., 2014, Vol. 20, no. 3, pp. 375-381.

54. Ishida K., Matsumoto T., Sasaki K., Mifune Y., Tei K., Kubo S. Bone regeneration properties of granulocyte colony-stimulating factor via neovascularization and osteogenesis. Tissue Eng. Part A, 2010, Vol. 16, no. 10, pp. 3271-3284.

55. Jäger M., Sager M., Knipper A., Degistirici O., Fischer J., Kögler G. In vivo and in vitro bone regeneration from cord blood derived mesenchymal stem cells. Orthopade, 2004, Vol. 33, no. 12, pp. 1361-1372.

56. Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz-Gonzalez X.R. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, Vol. 418, no. 6893, pp. 41-49.

57. Kelly D.J., Jacobs C.R. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. Part C Embryo Today Rev., 2010, Vol. 90, no. 1, pp. 75-85.

58. Khlusov I.A., Litvinova L.S., Khlusova M.Y., Yurova K.A. Concept of hematopoietic and stromal niches for cell-based diagnostics and regenerative medicine (a review). Curr. Pharm. Des., 2018, Vol. 24, no. 26, pp. 3034-3054.

59. Kim I.S., Song Y.M., Cho T.H., Park Y.D., Lee K.B., Noh I. In vitro response of primary human bone marrow stromal cells to recombinant human bone morphogenic protein-2 in the early and late stages of osteoblast differentiation. Dev. Growth Differ., 2008, Vol. 50, no. 7, pp. 553-564.

60. Ko K.S., McCulloch C.A. Intercellular mechanotransduction: cellular circuits that coordinate tissue responses to mechanical loading. Biochem. Biophys. Res. Commun., 2001, Vol. 285, no. 5, pp. 1077-1083.

61. Kowanetz M., Valcourt U., Bergström R., Heldin C.-H., Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein. Mol. Cell. Biol., 2004, Vol. 24, no. 10, pp. 4241-4254.

62. Kozlowska U., Krawczenko A., Futoma K., Jurek T., Rorat M., Patrzalek D. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J. Stem Cells, 2019, Vol. 11, no. 6, pp. 347-374.

63. Kramps .JA., de Man B.M., de Jong W.W. The primary structure of the B2 chain of human alpha-crystallin. FEBS Lett., 1977, Vol. 74, no. 1, pp. 82-84.

64. Kubo H., Shimizu M., Taya Y., Kawamoto T., Michida M., Kaneko E. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells, 2009, Vol. 14, no. 3, pp. 407-424.

65. Kulterer B., Friedl G., Jandrositz A., Sanchez-Cabo F., Prokesch A., Paar C. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics, 2007, Vol. 8, 70. doi: 10.1186/1471-2164-8-70.

66. Kunimatsu R., Nakajima K., Awada T., Tsuka Y., Abe T., Ando K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2018, Vol. 501, no. 1, pp. 193-198.

67. Kwon A., Kim Y., Kim M., Kim J., Choi H., Jekarl D.W. Tissue-specific differentiation potency of mesenchymal stromal cells from perinatal tissues. Sci. Rep., 2016, Vol. 6, 23544. doi: 10.1038/srep23544.

68. Lambrecht S., Verbruggen G., Elewaut D., Deforce D. Differential expression of alphaB-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum., 2009, Vol. 60, no. 1, pp. 179-188.

69. Li C., Wu X., Tong J., Yang X., Zhao J., Zheng Q. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther., 2015, Vol. 6, 55. doi: 10.1186/s13287-015-0066-5.

70. Li X., Bai J., Ji X., Li R., Xuan Y., Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int. J. Mol. Med., 2014, Vol. 34, no. 3, pp. 695-704.

71. Lian J.B., Javed A., Zaidi S.K., Lengner C., Montecino M., van Wijnen A.J. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot Gene Expr., 2004, Vol. 14, no. 1-2, pp. 1-41.

72. Litvinova L.S., Shupletsova V.V., Yurova K.A., Khaziakhmatova O.G., Todosenko N.M., Malashchenko V.V. Secretion of hematopoietic niche signal molecules under conditions of osteogenic differentiation of multipotent mesenchymal stromal cells induced by relief calcium phosphate coating. Biochem. Mosc. Suppl. Ser. B Biomed. Chem., 2019, Vol. 13, pp. 341-348.

73. Liu F., Malaval L., Aubin J.E. The mature osteoblast phenotype is characterized by extensive plasticity. Exp. Cell Res., 1997, Vol. 232, no. 1, pp. 97-105.

74. Liu T.M. Stemness of mesenchymal stem cells. J Stem Cell Ther. Transplant., 2017, Vol. 1, pp. 71-73.

75. Loi F., Córdova L.A., Pajarinen J., Lin T., Yao Z., Goodman S.B. Inflammation, fracture and bone repair. Bone, 2016, Vol. 86, pp. 119-130.

76. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 2011, Vol. 13, no. 1, pp. 27-38.

77. Lüthen F., Lange R., Becker P., Rychly J., Beck U., Nebe J.G.B. The influence of surface roughness of titanium on beta1- and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials, 2005, Vol. 26, no. 15, pp. 2423-2440.

78. Maeda S., Nobukuni T., Shimo-Onoda K., Hayashi K., Yone K., Komiya S. Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization. J. Cell. Physiol., 2002, Vol. 193, no. 1, pp. 73-79.

79. Maeda Y., Tsuji K., Nifuji A., Noda M. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J. Cell. Biochem., 2004, Vol. 93, no. 2, pp. 337-344.

80. Magnusson L.U., Hagberg Thulin M., Plas P., Olsson A., Damber J.-E., Welén K. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment. Prostate, 2016, Vol. 76, no. 4, pp. 383-393.

81. Mathieu P.S., Loboa E.G. Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng. Part B Rev., 2012, Vol. 18, no. 6, pp. 436-444.

82. McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell, 2004, Vol. 6, no. 4, pp. 483-495.

83. McCafferty M.M., Burke G.A., Meenan B.J. Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces. J. Biomed. Mater. Res. A, 2014, Vol. 102, no. 10, pp. 3585-3597.

84. Medhat D., Rodríguez C.I., Infante A. Immunomodulatory effects of MSCs in bone healing. Int. J. Mol. Sci., 2019, Vol. 20, no. 21, 5467. doi: 10.3390/ijms20215467.

85. Menuki K., Mori T., Sakai A., Sakuma M., Okimoto N., Shimizu Y. Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone, 2008, Vol. 43, no. 3, pp. 613-620.

86. Mussano F., Genova T., Petrillo S., Roato I., Ferracini R., Munaron L. Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED. Int. J. Mol. Sci., 2018, Vol. 19, no. 5, 1454. doi: 10.3390/ijms19051454.

87. Nagamura-Inoue T., He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J. Stem Cells, 2014, Vol. 6, no. 2, pp. 195-202.

88. Niemeyer P., Kornacker M., Mehlhorn A., Seckinger A., Vohrer J., Schmal H. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng., 2007, Vol. 13, no. 1, pp. 111-121.

89. Ohashi K., Fujiwara S., Mizuno K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J. Biochem. (Tokyo), 2017, Vol. 161, no. 3, pp. 245-254.

90. Orciani M., Di Primio R. Skin-derived mesenchymal stem cells: isolation, culture, and characterization. Methods Mol. Biol. Clifton N.J., 2013, Vol. 989, pp. 275-283.

91. Orr A.W., Helmke B.P., Blackman B.R., Schwartz M.A. Mechanisms of mechanotransduction. Dev. Cell, 2006, Vol. 10, no. 1, pp. 11-20.

92. Ozdemir T., Bowers D.T., Zhan X., Ghosh D., Brown J.L. Identification of key signaling pathways orchestrating substrate topography directed osteogenic differentiation through high-throughput siRNA Screening. Sci. Rep., 2019, Vol. 9, 1001. doi: 10.1038/s41598-018-37554-y.

93. Parekh S.H., Chatterjee K., Lin-Gibson S., Moore N.M., Cicerone M.T., Young M.F. Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials, 2011, Vol. 32, pp. 2256-2264.

94. Park C.W., Kim K.-S., Bae S., Son H.K., Myung P.-K., Hong H.J. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells, 2009, Vol. 2, no. 1, pp. 59-68.

95. Park J.S., Chu J.S., Tsou A.D., Diop R., Tang Z., Wang A. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials, 2011, Vol. 32, no. 16, pp. 3921-3930.

96. Park S.-H., Sim W.Y., Min B.-H., Yang S.S., Khademhosseini A., Kaplan D.L. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PloS ONE, 2012, Vol. 7, e46689.DOI: 10.1371/journal.pone.0046689.

97. Pelekanos R.A., Sardesai V.S., Futrega K., Lott W.B., Kuhn M., Doran M.R. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue. J. Vis. Exp., 2016, Vol. 112, 54204. doi: 10.3791/54204.

98. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, Vol. 276, no. 5309, pp. 71-74.

99. Prowse P.D.H., Elliott C.G., Hutter J., Hamilton D.W. Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies. PloS ONE, 2013, Vol. 8, e58898. doi: 10.1371/journal.pone.0058898.

100. Rath S.N., Nooeaid P., Arkudas A., Beier J.P., Strobel L.A., Brandl A. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds. J. Tissue Eng. Regen. Med., 2016, Vol. 10, no. 10, pp. E497-E509.

101. Rauch A., Haakonsson A.K., Madsen J.G.S., Larsen M., Forss I., Madsen M.R. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat. Genet., 2019, Vol. 51, no. 4, pp. 716-727.

102. Rawadi G., Vayssière B., Dunn F., Baron R., Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Miner. Res., 2003, Vol. 18, no. 10, pp.1842-1853.

103. Roelen B.A.J., ten Dijke P. Controlling mesenchymal stem cell differentiation by TGFBeta family members. J. Orthop. Sci., 2003, Vol. 8, no. 5, pp. 740-748.

104. Roostalu J., Surrey T. Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol., 2017, Vol. 18, no. 11, pp. 702-710.

105. Rowland C.R., Glass K.A., Ettyreddy A.R., Gloss C.C., Matthews J.R.L., Huynh N.P.T. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials, 2018, Vol. 177, pp. 161-175.

106. Ruef N., Dolder S., Aeberli D., Seitz M., Balani D., Hofstetter W. Granulocyte-macrophage colony-stimulating factor-dependent CD11c-positive cells differentiate into active osteoclasts. Bone, 2017, Vol. 97, pp. 267-277.

107. Saidova A.A., Vorobjev I.A. Lineage commitment, signaling pathways, and the cytoskeleton systems in mesenchymal stem cells. Tissue Eng. Part B Rev., 2020, Vol. 26, no. 1, pp. 13-25.

108. Schmidt-Bleek K., Kwee B.J., Mooney D.J., Duda G.N. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Eng. Part B Rev., 2015, Vol. 21, no. 4, pp. 354-364.

109. Schwarz U.S., Erdmann T., Bischofs I.B. Focal adhesions as mechanosensors: the two-spring model. Biosystems, 2006, Vol. 83, no. 2-3, pp. 225-232.

110. Sciaudone M., Gazzerro E., Priest L., Delany A.M., Canalis E. Notch 1 impairs osteoblastic cell differentiation. Endocrinology, 2003, Vol. 144, no. 12, pp. 5631-5639.

111. Sen B., Xie Z., Case N., Thompson W.R., Uzer G., Styner M. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J. Bone Miner. Res., 2014, Vol. 29, no. 1, pp. 78-89.

112. Shafiee A., Seyedjafari E., Soleimani M., Ahmadbeigi N., Dinarvand P., Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol. Lett., 2011, Vol. 33, no. 6, pp. 1257-1264.

113. Shafrir Y., Forgacs G. Mechanotransduction through the cytoskeleton. Am. J. Physiol. Cell Physiol., 2002, Vol. 282, no. 3, pp. 479-486.

114. Shi M., Liu Z., Wang Y., Xu R., Sun Y., Zhang M. A pilot study of mesenchymal stem cell therapy for acute liver allograft rejection. Stem Cells Transl. Med., 2017, Vol. 6, no. 12, pp. 2053-2061.

115. Sinha K. M., Zhou X. Genetic and molecular control of osterix in skeletal formation. J. Cell. Biochem., 2013, Vol. 114, no. 5, pp. 975-984.

116. Sniadecki N.J., Desai R.A., Ruiz S.A., Chen C.S. Nanotechnology for cell-substrate interactions. Ann. Biomed. Eng., 2006, Vol. 34, no. 1, pp. 59-74.

117. Sohn D.H., Jeong H., Roh J.S., Lee H.-N., Kim E., Koh J.H. Serum CCL11 level is associated with radiographic spinal damage in patients with ankylosing spondylitis. Rheumatol. Int., 2018, Vol. 38, no. 8, pp. 1455-1464.

118. Song I., Kim B.-S., Kim C.-S., Im G.-I. Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochem. Biophys. Res. Commun., 2011, Vol. 408, no. 1, pp. 126-131.

119. Sonowal H., Kumar A., Bhattacharyya J., Gogoi P.K., Jaganathan B.G. Inhibition of actin polymerization decreases osteogeneic differentiation of mesenchymal stem cells through p38 MAPK pathway. J. Biomed. Sci., 2013, Vol. 20, 71. doi: 10.1186/1423-0127-20-71.

120. Spiegelman B.M., Farmer S.R. Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell, 1982, Vol. 29, no. 1, pp. 53-60.

121. Steward A.J., Cole J.H., Ligler F.S., Loboa E.G. Mechanical and vascular cues synergistically enhance osteogenesis in human mesenchymal stem cells. Tissue Eng. Part A, 2016, Vol. 22, no. 15-16, pp. 997-1005.

122. Steward A.J., Kelly D.J. Mechanical regulation of mesenchymal stem cell differentiation. J. Anat., 2015, Vol. 227, no. 6, pp. 717-731.

123. Stiehler M., Bünger C., Baatrup A., Lind M., Kassem M., Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. A, 2009, Vol. 89, no. 1, pp. 96-107.

124. Stocchero I.N., Stocchero G.F. Isolation of stem cells from human adipose tissue: technique, problems, and pearls. Adipose Stem Cells and Regenerative Medicine, 2011, pp. 13-18.

125. Sumanasinghe R.D., Bernacki S.H., Loboa E.G. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng., 2006, Vol. 12, no. 12, pp. 3459-3465.

126. Takayanagi H., Ogasawara K., Hida S., Chiba T., Murata S., Sato K. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature, 2000, Vol. 408, no. 6812, pp. 600-605.

127. Thiagarajan L., Abu-Awwad H.A.-D.M., Dixon J.E. Osteogenic Programming of Human Mesenchymal Stem Cells with Highly Efficient Intracellular Delivery of RUNX2. Stem Cells Transl. Med., 2017, Vol. 6, no. 12, pp. 2146-2159.

128. Thomas C.H., Collier J.H., Sfeir C.S., Healy K.E. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, no. 4, pp. 1972-1977.

129. Tong X., Chen X., Zhang S., Huang M., Shen X., Xu J. The effect of exercise on the prevention of osteoporosis and bone angiogenesis. BioMed. Res. Int., 2019, Vol. 2019, 8171897. doi: 10.1155/2019/8171897.

130. Urist M.R., Strates B.S. Bone morphogenetic protein. J. Dent. Res., 1971, Vol. 50, no. 6, pp. 1392-1406.

131. Wechsler M.E., Hermann B.P., Bizios R. Adult human mesenchymal stem cell differentiation at the cell population and single-cell levels under alternating electric current. Tissue Eng. Part C Methods, 2016, Vol. 22, no. 2, pp. 155-164.

132. Woo D.-H., Hwang H.S., Shim J.H. Comparison of adult stem cells derived from multiple stem cell niches. Biotechnol. Lett., 2016, Vol. 38, no. 5, pp. 751-759.

133. Wu S., Xiao Z., Song J., Li M., Li W. Evaluation of BMP-2 enhances the osteoblast differentiation of human amnion mesenchymal stem cells seeded on nano-hydroxyapatite/collagen/poly(l-Lactide). Int. J. Mol. Sci., 2018, Vol. 19, no. 8, 2171. doi: 10.3390/ijms19082171.

134. Wu W., Le A.V., Mendez J.J., Chang J., Niklason L.E., Steinbacher D.M. Osteogenic performance of donormatched human adipose and bone marrow mesenchymal cells under dynamic culture. Tissue Eng. Part A, 2015, Vol. 21, no. 9-10, pp. 1621-1632.

135. Wu X., Wang W., Meng C., Yang S., Duan D., Xu W. Regulation of differentiation in trabecular bone-derived mesenchymal stem cells by T cell activation and inflammation. Oncol. Rep., 2013, Vol. 30, no. 5, pp. 2211-2219.

136. Xing Z., Lu C., Hu D., Yu Y., Wang X., Colnot C. Multiple roles for CCR2 during fracture healing. Dis. Model Mech., 2010, Vol. 3, no. 7-8, pp. 451-458.

137. Xu L., Liu Y., Sun Y., Wang B., Xiong Y., Lin W. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Stem Cell Res. Ther., 2017, Vol. 8, no. 1, 275. doi: 10.1186/s13287-017-0716-x.

138. Yamada Y., Nakamura S., Ito K., Sugito T., Yoshimi R., Nagasaka T. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng. Part A, 2010, Vol. 16, no. 6, pp. 1891-900.

139. Yamagishi T., Otsuka E., Hagiwara H. Reciprocal control of expression of mRNAs for osteoclast differentiation factor and OPG in osteogenic stromal cells by genistein: evidence for the involvement of topoisomerase II in osteoclastogenesis. Endocrinology, 2001, Vol. 142, no. 8, pp. 3632-3637.

140. Yang W., Han W., He W., Li J., Wang J., Feng H. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, Vol. 60, pp. 45-53.

141. Yuan Y., Chen X., Zhang L., Wu J., Guo J., Zou D. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol., 2016, Vol. 122, no. 2, pp. 122-130.

142. Yurova K.A., Khaziakhmatova O.G., Melashchenko E.S., Malashchenko V.V., Shunkin E.O., Shupletsova V.V. Cellular and Molecular Basis of Osteoblastic and Vascular Niches in the Processes of Hematopoiesis and Bone Remodeling (A Short Review of Modern Views). Curr. Pharm. Des., 2019, Vol. 25, no. 6, pp. 663-669.

143. Zernik J., Twarog K., Upholt W.B. Regulation of alkaline phosphatase and alpha 2(I) procollagen synthesis during early intramembranous bone formation in the rat mandible. Differ. Res. Biol. Divers., 1990, Vol. 44, no. 3, pp. 207-215.

144. Zheng Z.-W., Chen Y.-H., Wu D.-Y., Wang J.-B., Lv M.-M., Wang X.-S. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics, 2018, Vol. 8, no. 19, pp. 5482-5500.

145. Zhu B., Xue F., Li G., Zhang C. CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling. Cell Prolif., 2020, Vol. 53, e12709. doi: 10.1111/cpr.12709. 146. Zwetsloot A.J., Tut G., Straube A. Measuring microtubule dynamics. Essays Biochem., 2018, Vol. 62, no. 6, pp. 725-735.


Дополнительные файлы

Для цитирования:


Юрова К.А., Мелащенко Е.С., Хазиахматова О.Г., Малащенко В.В., Мелащенко О.Б., Шунькин Е.О., Норкин И.К., Хлусов И.А., Литвинова Л.С. Мезенхимные стволовые клетки: краткий обзор классических представлений и новых факторов остеогенной дифференцировки. Медицинская иммунология. 2021;23(2):207-222. https://doi.org/10.15789/1563-0625-MSC-2128

For citation:


Yurova K.A., Melashchenko E.S., Khasiakhmatova O.G., Malashchenko V.V., Melashchenko O.B., Shunkin E.O., Norkin I.K., Khlusov I.A., Litvinova L.S. Mesenchymal stem cells: a brief review of classis concepts and new factors of osteogenic differentiation. Medical Immunology (Russia). 2021;23(2):207-222. (In Russ.) https://doi.org/10.15789/1563-0625-MSC-2128

Просмотров: 193


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)