Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment
https://doi.org/10.15789/1563-0625-RAI-2111
Abstract
Glioblastoma remains the most common and aggressive primary brain tumor today. Because of the neuroanatomical location of glioblastoma, conventional chemotherapy and radiation therapy have limited efficacy in patients with these tumors. Over the past decade, antitumor immunotherapy has become widespread among modern therapeutic approaches. The importance of immunotherapeutic methods lies in their ability to increase the effectiveness of cancer treatment and prevent relapses by enhancing the systemic and local immune response against tumor cells.
One of the most promising directions in modern immunotherapy is CAR-T therapy, or adoptive cell therapy using genetically modified T-lymphocytes. The functional advantage of CAR-T therapy is its ability to genetically modify lymphocytes, leading to their activation in vitro.
This review examines the key principles of CAR-T therapy and analyzes the published results of clinical trials for the treatment of glioblastoma using several modifications of CAR-T cells.
About the Authors
S. V. TimofeevaRussian Federation
Research Associate, Cell Technology Laboratory.
344037, Rostov-on-Don, 14th Line, 63. Phone: 7(863) 300-02-00 (acc. 473)
Competing Interests:
not
A. O. Sitkovskaya
Russian Federation
Head, Cell Technology Laboratory.
Rostov-on-Don
Competing Interests:
not
I. A. Novikova
Russian Federation
PhD (Medicine), Deputy General Director for Research.
Rostov-on-Don
Competing Interests:
not
M. A. Ezhova
Russian Federation
Clinical Oncologist.
Rostov-on-Don
Competing Interests:
not
E. P. Lysenko
Russian Federation
PhD (Medicine), Clinical Oncologist.
Rostov-on-Don
Competing Interests:
not
O. I. Kit
Russian Federation
PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, General Director.
Rostov-on-Don
Competing Interests:
not
References
1. Pavlova A.A., Maschan M.A., Ponomarev V.B. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Onkogematologiya = Oncohematology, 2017, Vol. 12, no. 1, pp. 17-32. (In Russ.)
2. Ahmed N., Brawley V, Hegde M., Bielamowicz K., Kalra M., Landi D., Robertson C., Gray T.L., Diouf O., Wakefield A., Ghazi A., Gerken C., Yi Z., Ashoori A., Wu M.F., Liu H., Rooney C., Dotti G., Gee A., Su J., Kew Y., Baskin D., Zhang Y.J., New P, Grilley B., Stojakovic M., Hicks J., Powell S.Z., Brenner M.K., Heslop H.E., Grossman R., Wels W.S., Gottschalk S. HER2-specific chimeric antigen receptor-modified virus-specific T Cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol., 2017, Vol. 3, no. 8, pp. 1094-1101.
3. Ahmed N., Salsman V.S., Kew Y., Shaffer D., Powell S., Zhang Y.J., Grossman R.G., Heslop H.E., Gottschalk S. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin. Cancer Res., 2010, Vol. 16, no. 2, pp. 474-485.
4. Berger C., Jensen M.C., Lansdorp PM., Gough M., Elliott C., Riddell S.R. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. Version 2. J. Clin. Invest., 2008, Vol. 118, no. 1, pp. 294-305.
5. Bielamowicz K., Fousek K., Byrd T.T., Samaha H., Mukherjee M., Aware N., Wu M.F., Orange J.S., Sumazin P, Man T.K., Joseph S.K., Hegde M., Ahmed N. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol., 2018, Vol. 20, no. 4, pp. 506-518.
6. Brentjens R.J., Davila M.L., Riviere I., Park J., Wang X., Cowell L.G., Bartido S., Stefanski J., Taylor C., Olszewska M., Borquez-Ojeda O., Qu J., Wasielewska T., He Q., Bernal Y., Rijo I.V, Hedvat C., Kobos R., Curran K., Steinherz P, Jurcic J., Rosenblat T., Maslak P, Frattini M., Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med., 2013, Vol. 5, no. 177, 177ra38. doi:10.1126/scitranslmed.3005930.
7. Brentjens R.J., Latouche J.B., Santos E., Marti F., Gong M.C., Lyddane C., King P.D., Larson S., Weiss M., Riviere I., Sadelain M. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes costimulated by CD80 and interleukin-15. Nat. Med., 2003, Vol. 9, no. 3, pp. 279-286.
8. Brentjens R.J., Santos E., Nikhamin Y., Yeh R., Matsushita M., La Perle K., Quintas-Cardama A., Larson S.M., Sadelain M. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res., 2007, Vol. 13, no. 18, Pt 1, pp. 5426-5435.
9. Brown C.E., Alizadeh D., Starr R., Weng L., Wagner J.R., Naranjo A., Ostberg J.R., Blanchard M.S., Kilpatrick J., Simpson J., Kurien A., Priceman S.J., Wang X., Harshbarger T.L., D’Apuzzo M., Ressler J.A., Jensen M.C., Barish M.E., Chen M., Portnow J., Forman S.J., Badie B. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N. Engl. J. Med., 2016, Vol. 375, no. 26, pp. 2561-2569.
10. Casati A., Varghaei-Nahvi A., Feldman S.A., Assenmacher M., Rosenberg S.A., Dudley M.E., Scheffold A. Clinical-scale selection and viral transduction of human naive and central memory CD8+ T cells for adoptive cell therapy of cancer patients. Cancer Immunol. Immunother., 2013, Vol. 62, no. 10, pp. 1563-1573.
11. Carpenito C., Milone M.C., Hassan R., Simonet J.C., Lakhal M., Suhoski M.M., Varela-Rohena A., Haines K.M., Heitjan D.F., Albelda S.M., Carroll R.G., Riley J.L., Pastan I., June C.H. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA, 2009, Vol. 106, no. 9, pp. 3360-3365.
12. Chen D., Yang J. Development of novel antigen receptors for CAR T-cell therapy directed toward solid malignancies. Transl. Res., 2017, Vol. 187, pp. 11-21.
13. Chmielewski M., Kopecky C., Hombach A.A., Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res., 2011, Vol. 71, no. 17, pp. 5697-5706.
14. Dai H., Wang Y., Lu X., Han W. Chimeric antigen receptors modified T-Cells for cancer therapy. J. Natl Cancer Inst., 2016, Vol. 108, no. 7, djv439. doi: 10.1093/jnci/djv439.
15. Davila M.L., Riviere I., Wang X., Bartido S., Park J., Curran K., Chung S.S., Stefanski J., Borquez-Ojeda O., Olszewska M., Qu J., Wasielewska T., He Q., Fink M., Shinglot H., Youssif M., Satter M., Wang Y., Hosey J., Quintanilla H., Halton E., Bernal Y., Bouhassira D.C., Arcila M.E., Gonen M., Roboz G.J., Maslak P, Douer D., Frattini M.G., Giralt S., Sadelain M., Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 2014, Vol. 6, no. 224, 224ra25. doi: 10.1126/scitranslmed.3008226.
16. Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA, 1993, Vol. 90, no. 2, pp. 720-724.
17. Freimuller C., Stemberger J., Artwohl M., Germeroth L., Witt V., Fischer G., Tischer S., Eiz-Vesper B., Knippertz I., Dbrrie J., Schaft N., Lion T., Fritsch G., Geyeregger R. Selection of adenovirus-specific and Epstein-Barr virus-specific T cells with major histocompatibility class I streptamers under Good Manufacturing Practice (GMP)-compliant conditions. Cytotherapy, 2015, Vol. 17, no. 7, pp. 989-1007.
18. Gattinoni L., Lugli E., Ji Y., Pos Z., Paulos C.M., Quigley M.F., Almeida J.R., Gostick E., Yu Z., Carpenito C., Wang E., Douek D.C., Price D.A., June C.H., Marincola F.M., Roederer M., Restifo N.P A human memory T cell subset with stem cell-like properties. Nat. Med., 2011, Vol. 17, no. 10, pp. 1290-1297.
19. Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R., Teachey D.T., Chew A., Hauck B., Wright J.F., Milone M.C., Levine B.L., June C.H. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med., 2013, Vol. 368, no. 16, pp. 1509-1518.
20. Gupta P, Han S.Y., Holgado-Madruga M., Mitra S.S., Li G., Nitta R.T., Wong A.J. Development of an EGFRvIII specific recombinant antibody. BMC Biotechnol., 2010, Vol. 10, 72. doi: 10.1186/1472-6750-10-72.
21. Hamid O., Robert C., Daud A., Hodi F.S., Hwu W.J., Kefford R., Wolchok J.D., Hersey P, Joseph R.W., Weber J.S., Dronca R., Gangadhar T.C., Patnaik A., Zarour H., Joshua A.M., Gergich K., Elassaiss-Schaap J., Algazi A., Mateus C., Boasberg P, Tumeh PC., Chmielowski B., Ebbinghaus S.W., Li X.N., Kang S.P, Ribas A. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med., 2013, Vol. 369, no. 2, pp. 134-144.
22. Hammill J.A., VanSeggelen H., Helsen C.W., Denisova G.F., Evelegh C., Tantalo D.G., Bassett J.D., Bramson J.L. Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J. Immunother. Cancer, 2015, Vol. 3, 55. doi: 10.1186/s40425-015-0099-4.
23. Hao C., Parney I.F., Roa W.H., Turner J., Petruk K.C., Ramsay D.A. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol., 2002, Vol. 103, no. 2, pp. 171-178.
24. Heathman T.R., Nienow A.W., McCall M.J., Coopman K., Kara B., Hewitt C.J. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen. Med., 2015, Vol. 10, no. 1, pp. 49-64.
25. Hinrichs C.S., Borman Z.A., Gattinoni L., Yu Z., Burns W.R., Huang J., Klebanoff C.A., Johnson L.A., Kerkar S.P., Yang S., Muranski P, Palmer D.C., Scott C.D., Morgan R.A., Robbins P.F., Rosenberg S.A., Restifo N.P. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood, 2011, Vol. 117, no. 3, pp. 808-814.
26. Hollyman D., Stefanski J., Przybylowski M., Bartido S., Borquez-Ojeda O., Taylor C., Yeh R., Capacio V, Olszewska M., Hosey J., Sadelain M., Brentjens R.J., Riviere I. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother., 2009, Vol. 32, no. 2, pp. 169-180.
27. Jamnani F.R., Rahbarizadeh F., Shokrgozar M.A., Mahboudi F., Ahmadvand D., Sharifzadeh Z., Parhamifar L., Moghimi S.M. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim. Biophys. Acta, 2014, Vol. 1840, no. 1, pp. 378-386.
28. Keu K.V., Witney T.H., Yaghoubi S., Rosenberg J., Kurien A., Magnusson R., Williams J., Habte F., Wagner J.R., Forman S., Brown C., Allen-Auerbach M., Czernin J., Tang W., Jensen M.C., Badie B., Gambhir S.S. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med., 2017, Vol. 9, no. 373, eaag2196. doi: 10.1126/scitranslmed.aag2196.
29. Kim J.V., Latouche J.B., Riviere I., Sadelain M. The ABCs of artificial antigen presentation. Nat. Biotechnol., 2004, Vol. 22, no. 4, pp. 403-410.
30. Kochenderfer J.N., Wilson W.H., Janik J.E., Dudley M.E., Stetler-Stevenson M., Feldman S.A., Maric I., Raffeld M., Nathan D.A., Lanier B.J., Morgan R.A., Rosenberg S.A. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010, Vol. 116, no. 20, pp. 4099-4102.
31. Krenciute G., Prinzing B.L., Yi Z., Wu M.F., Liu H., Dotti G., Balyasnikova I.V., Gottschalk S. Transgenic expression of IL15 improves antiglioma activity of IL13Ra2-CAR T Cells but results in antigen loss variants. Cancer Immunol. Res., 2017, Vol. 5, no. 7, pp. 571-581.
32. Kumaresan P, Figliola M., Moyes J.S., Huls M.H., Tewari P, Shpall E.J, Champlin R., Cooper L.J. Automated cell enrichment of cytomegalovirus-specific T cells for clinical applications using the cytokine-capture system. J. Vis. Exp., 2015, Vol. 104, 52808. doi: 10.3791/52808.
33. Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., Cui Y.K., Delbrook C., Feldman S.A., Fry T.J., Orentas R., Sabatino M., Shah N.N., Steinberg S.M., Stroncek D., Tschernia N., Yuan C., Zhang H., Zhang L., Rosenberg S.A., Wayne A.S., Mackall C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, 2015, Vol. 385, no. 9967, pp. 517-528.
34. Lynch A., Hawk W., Nylen E., Ober S., Autin P, Barber A. Adoptive transfer of murine T cells expressing a chimeric-PD1-Dap10 receptor as an immunotherapy for lymphoma. Immunology, 2017, Vol. 152, no. 3, pp. 472-483.
35. MacLeod D.T., Antony J., Martin A.J., Moser R.J., Hekele A., Wetzel K.J., Brown A.E., Triggiano M.A., Hux J.A., Pham C.D., Bartsevich V.V., Turner C.A., Lape J., Kirkland S., Beard C.W., Smith J., Hirsch M.L., Nicholson M.G., Jantz D., McCreedy B. Integration of a CD19 CAR into the TCR Alpha chain locus streamlines production of allogeneic gene-edited CAR T Cells. Mol. Ther., 2017 Apr 5, Vol. 25, no. 4, pp. 949-961.
36. Maher J., Brentjens R.J., Gunset G., Riviere I., Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol., 2002, Vol. 20, no. 1, pp. 70-75.
37. Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., Mahnke Y.D., Melenhorst J.J., Rheingold S.R., Shen A., Teachey D.T., Levine B.L., June C.H., Porter D.L., Grupp S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, Vol. 371, no. 16, pp. 1507-1517.
38. Miliotou A.N., Papadopoulou L.C. CAR T-cell therapy: a new era in cancer immunotherapy. Curr. Pharm. Biotechnol., 2018, Vol. 19, no. 1, pp. 5-18.
39. Milone M.C., Fish J.D., Carpenito C., Carroll R.G., Binder G.K., Teachey D., Samanta M., Lakhal M., Gloss B., Danet-Desnoyers G., Campana D., Riley J.L., Grupp S.A., June C.H. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Version 2. Mol. Ther., 2009, Vol. 17, no. 8, pp. 1453-1464.
40. Mirzaei R., Sarkar S., Yong V.W. T Cell exhaustion in glioblastoma: intricacies of immune checkpoints. Trends Immunol., 2017, Vol. 38, no. 2, pp. 104-115.
41. Naldini L., Blbmer U., Gallay P., Ory D., Mulligan R., Gage F.H., Verma I.M., Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, Vol. 272, no. 5259, pp. 263-267.
42. Newick K., O’Brien S., Moon E., Albelda S.M. CAR T Cell therapy for solid tumors. Annu. Rev. Med., 2017, Vol. 68, pp. 139-152.
43. Park S., Shevlin E., Vedvyas Y., Zaman M., Park S., Hsu Y.S., Min I.M., Jin M.M. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci. Rep., 2017, Vol. 7, no. 1, 14366. doi: 10.1038/s41598-017-14749-3.
44. Petersen C.T., Krenciute G. Next generation CAR T Cells for the immunotherapy of high-grade glioma. Front. Oncol., 2019, Vol. 9, 69. doi: 10.3389/fonc.2019.00069.
45. Powell D.J. Jr., Brennan A.L., Zheng Z., Huynh H., Cotte J., Levine B.L. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy, 2009, Vol. 11, no. 7, pp. 923-935.
46. Qazi M.A., Vora P., Venugopal C., Sidhu S.S., Moffat J., Swanton C., Singh S.K. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann. Oncol., 2017, Vol. 28, no. 7, pp. 1448-1456.
47. Riccione K., Suryadevara C.M., Snyder D., Cui X., Sampson J.H., Sanchez-Perez L. Generation of CAR T cells for adoptive therapy in the context of glioblastoma standard of care. J. Vis. Exp., 2015, Vol. 96, 52397. doi: 10.3791/52397.
48. Rosenberg S.A., Lotze M.T., Muul L.M., Leitman S., Chang A.E., Ettinghausen S.E., Matory Y.L., Skibber J.M., Shiloni E., Vetto J.T., Seipp C.A., Simpson C., Reichert C.M. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med, 1985, Vol. 313, no. 23, pp. 1485-1492.
49. Sadelain M., Brentjens R., Riviere I. The basic principles of chimeric antigen receptor design. CancerDiscov., 2013, Vol. 3, no. 4, pp. 388-398.
50. Sampson J.H., Choi B.D., Sanchez-Perez L., Suryadevara C.M., Snyder D.J., Flores C.T., Schmittling R.J., Nair S.K., Reap E.A., Norberg P.K., Herndon J.E. 2nd, Kuan C.T., Morgan R.A., Rosenberg S.A., Johnson L.A. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin. Cancer Res., 2014, Vol. 20, no. 4, pp. 972-984.
51. Singh H., Huls H., Kebriaei P., Cooper L.J. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol. Rev., 2014, Vol. 257, no. 1, pp. 181-190.
52. Srivastava S., Riddell S.R. Engineering CAR-T cells: Design concepts. Trends Immunol., 2015, Vol. 36, no. 8, pp. 494-502.
53. Suhoski M.M., Golovina T.N., Aqui N.A., Tai V.C., Varela-Rohena A., Milone M.C., Carroll R.G., Riley J.L., June C.H. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol. Ther., 2007, Vol. 15, no. 5, pp. 981-988.
54. Thayaparan T., Petrovic R.M., Achkova D.Y., Zabinski T., Davies D.M., Klampatsa A., Parente-Pereira A.C., Whilding L.M., van der Stegen S.J., Woodman N., Sheaff M., Cochran J.R., Spicer J.F., Maher J. CAR T-cell immunotherapy of MET-expressing malignant mesothelioma. Oncoimmunology, 2017, Vol. 6, no. 12, e1363137. doi: 10.1080/2162402X.2017.1363137.
55. van der Stegen S.J., Hamieh M., Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov., 2015, Vol. 14, no. 7, pp. 499-509.
56. Wang X., Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics, 2016, Vol. 3, 16015. doi: 10.1038/mto.2016.15.
57. Zhang H., Ye Z.L., Yuan Z.G., Luo Z.Q., Jin H.J., Qian Q.J. New strategies for the treatment of solid tumors with CAR-T Cells. Int. J. Biol. Sci., 2016, Vol. 12, no. 6, pp. 718-729.
58. Zhong X.S., Matsushita M., Plotkin J., Riviere I., Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther., 2010, Vol. 2, pp. 413-420.
59. Zhu C., Mustafa D., Zheng P.P., van der Weiden M., Sacchetti A., Brandt M., Chrifi I., Tempel D., Leenen P.J.M., Duncker D.J., Cheng C., Kros J.M. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro Oncol., 2017, Vol. 19, no. 5, pp. 648-659.
Supplementary files
Review
For citations:
Timofeeva S.V., Sitkovskaya A.O., Novikova I.A., Ezhova M.A., Lysenko E.P., Kit O.I. Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment. Medical Immunology (Russia). 2021;23(3):483-496. (In Russ.) https://doi.org/10.15789/1563-0625-RAI-2111