Blood platelets in the development of sepsis, septic shock and multiple organ failure syndrome
https://doi.org/10.15789/1563-0625-BPI-2090
Abstract
Participation of blood platelets in the development of sepsis is clearly illustrated by hemocoagulation disorders and frequently observed thrombocytopenia. In the patients with sepsis, thrombocytopenia develops rapidly, with minimal platelet counts registered on the fourth day of observation, after which the platelet counts usually rise. Continuous thrombocytopenia and absence of a relative increase in platelets are considered predictors of patient death. The mechanisms of thrombocytopenia developing in sepsis are quite diverse, but the processes in periphery are prevailing, e.g., the so-called “platelet consumption” which is determined by their activation, chemotaxis and isolation in the microvasculature. Recently, a mechanism has been identified for the accelerated removal of platelets with desialized surface glycoproteins from the circulation. Sialidases, also known as neuraminidases, are widely present in viruses and bacteria, and pharmacological inhibition of sialidases is able to withstand thrombocytopenia in the infectious process. The key role of platelets in the development of septic shock was revealed. Sequestration of platelets in the microvessels of the lungs and brain (manifesting as thrombocytopenia) is accompanied by rapid serotonin release, thus underlying the main clinical manifestations, e.g., decreased blood pressure, heart rate and increased capillary permeability. To counteract sharp release of this mediator, pharmacological attempts are made to inhibit the SERT transporter by means of selective serotonin reuptake inhibitors. Blood platelets are key participants in the pathogenesis of multiple organ failure syndromes, such as acute renal damage, acute respiratory distress syndrome, myocardial dysfunction, and sepsis-associated encephalopathy. To restore impaired vascular permeability in these conditions, in particular, sepsis-associated encephalopathy, a pharmacological S1P receptor mimetic is under study. The review specifies possible pathogenetically significant targets that can be used to perform pharmacological correction of conditions associated with sepsis and concomitant thrombocytopenia.
About the Authors
N. B. SerebryanayaRussian Federation
Serebryanaya Natalya B., PhD, MD (Medicine), Professor, Head, Laboratory of General Immunology, Immunology Department, Institute of Experimental Medicine
197376, St. Petersburg, Acad. Pavlov str., 12
P. P. Yakutseni
Russian Federation
Yakutseni Pavel P., PhD, MD (Biology), Chief Research Associate, Center for Advanced Studies, Peter the Great
St. Petersburg
References
1. Rudnov V.A., Kulabukhov V.V. Sepsis-3: updated key points, potential problems and further practical steps. Vestnik anesteziologii i reanimatologii = Bulletin of Anesthesiology and Resuscitation, 2016, Vol. 13, no. 4, pp. 4-11. (In Russ.)
2. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Platelets as activators and regulators of inflammatory and immune responses. Part 2. Platelets as participants in immune responses. Meditsinskaya immunologiya = Medical Immunology (Russia), 2019, Vol. 21, no. 1, pp. 9-20. (In Russ.) doi: 10.15789/1563-0625-2019-1-9-20.
3. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Platelets and neuroinflammation. Part 1: Platelets as regulators of neuroinflammation and neuroreparation. Tsitokiny i vospalenie = Cytokines and Inflammation, 2017, Vol. 16, no. 4, pp. 5-12. (In Russ.)
4. Serebryanaya N.B., Yakutseni P.P., Klimko N.N. The role of platelets in the pathogenesis of bacterial infections. Zhurnal infektologii = Journal of Infectology, 2017, Vol. 9, no. 4, pp. 5-13. (In Russ.)
5. Щеголев А.И., Туманова У.Н., Мишнев О.Д. Патология сердца при сепсисе // Международный журнал прикладных и фундаментальных исследований, 2019. № 9. С. 56-61. [Shchegolev A.I., Tumanova U.N., Mishnev O.D. Pathology of the heart at sepsis. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy = International Journal of Applied and Basic Research, 2019, no. 9, pp. 56-61. (In Russ.)
6. Akca S., Haji-Michael P., de Mendonça A., Suter P., Levi M., Vincent J.L. Time course of platelet counts in critically ill patients. Crit. Care Med., 2002, Vol. 30, no. 4, pp. 753-756.
7. Akinosoglou K., Alexopoulos D. Use of antiplatelet agents in sepsis: a glimpse into the future. Thromb. Res., 2014, Vol. 133, no. 2, pp. 131-138.
8. Alhamdi Y., Toh C.-H. The role of extracellular histones in haematological disorders. Br. J. Haematol., 2016, Vol. 173, no. 5, pp. 805-811.
9. Ammollo C.T., Semeraro F., Xu J., Esmon N.L., Esmon C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost., 2011, Vol. 9, no. 9, pp. 1795-1803.
10. Anderson H.L., Brodsky I.E., Mangalmurti N.S. The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol., 2018, Vol. 201, no. 5, pp. 1343-1351.
11. Andonegui G., Kerfoot S.M., McNagny K., Ebbert K.V., Patel K.D., Kubes P. Platelets express functional Toll-like receptor-4. Blood, 2005, Vol. 106, no. 7, pp. 2417-2423.
12. Azevedo L.C., Janiszewski M., Pontieri V., Pedro M.D.A., Bassi E., Tucci P.J., Laurindo F.R. Plateletderived exosomes from septic shock patients induce myocardial dysfunction. Crit. Care, 2007, Vol. 11, no. 6, R120. doi: 10.1186/cc6176.
13. Baughman R.P., Lower E.E., Flessa H.C., Tollerud D.J. Thrombocytopenia in the intensive care unit. Chest, 1993, Vol. 104, no. 4, pp. 1243-1247.
14. Bowton D.L., Bertels N.H., Prough D.S., Stump D.A. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit. Care Med., 1989, Vol. 17, no. 5, pp. 39-403.
15. Brown D.L., Lachmann P.J. The behaviour of complement and platelets in lethal endotoxin shock in rabbits. Int. Arch. Allergy Appl. Immunol., 1973, Vol. 45, no. 1, pp. 193-205.
16. Carvalho A.C., DeMarinis S., Scott C.F., Silver L.D., Schmaier A.H., Colman R.W. Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome. J. Lab. Clin. Med., 1988, Vol. 112, no. 2, pp. 270-277.
17. Chousterman B.G., Swirski, F.K., G.F. Weber. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol., 2017, Vol. 39, no. 5, pp. 517-528.
18. Chun J., Hartung H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 2010, Vol. 33, no. 2, pp. 91-101.
19. Cines D.B., Bussel J.B., Liebman H.A., Luning Prak E.T. The ITP syndrome: pathogenic and clinical diversity. Blood, 2009, Vol. 113, no. 26, pp. 6511-6521.
20. Clark S.R., Ma A.C., Tavener S.A. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med., 2007, Vol. 13, no. 4, pp. 463-469.
21. Claushuis T.A., van Vught L.A., Scicluna B.P. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood, 2016, Vol. 127, no. 24, pp. 3062-3072.
22. ClinicalTrials.gov. ASpirin as a Treatment for ARDS (STAR): a phase 2 randomised control trial (STAR). Available at: https://clinicaltrials.gov/ct2/show/NCT02326350.
23. ClinicalTrials.gov. ASpirin for Patients with SEPsis and SeptIc Shock (ASP-SEPSIS). Available at: https://clinicaltrials.gov/ct2/show/NCT01784159.
24. Cloutier N., Allaeys I., Marcoux G. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc. Natl. Acad. Sci. USA, 2018, Vol. 115, no. 7, pp. E1550-E1559.
25. Czaikoski P.G., Mota J.M., Nascimento D.C., Sônego F., Castanheira F.V., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE, 2016, Vol. 11, e0148142. doi: 10.1371/journal.pone.0148142.
26. Dabiré H. Central 5-hydroxytryptamine (5-HT) receptors in blood pressure regulation. Therapie, 1991, Vol. 46, no. 6., pp. 421-429.
27. de Stoppelaar S.F., van ‘t Veer C., Claushuis T.A., Albersen B.J., Roelofs J.J., van der Poll T. Thrombocytopenia impairs host defense in gram-negative pneumonia derived sepsis. Blood, 2014, Vol. 124, no. 25, pp. 3781-3790.
28. de Stoppelaar S.F., van ‘t Veer C., van der Poll T. The role of platelets in sepsis. Thromb. Haemost., 2014, Vol. 112, no. 4, pp. 666-677.
29. Duerschmied D., Suidan G.L., Demers M. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 2013, Vol. 121, no. 6, pp. 1008-1015.
30. Eisen D.P., Moore E.M., Leder K. AspiriN to Inhibit SEPSIS (ANTISEPSIS) randomised controlled trial protocol. BMJ Open, 2017, Vol. 7, no. 1, e013636. doi:10.1136/bmjopen-2016-013636.
31. Fearon D.T., Ruddy S., Schur P.H., McCabe W.R. Activation of the properdin pathway of complement in patients with gram-negative of bacteremia. N. Engl. J. Med., 1975, Vol. 292, no. 18, pp. 937-940.
32. Fleischmann C., Scherag A., Adhikari N.K. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am. J. Respir. Crit. Care Med., 2016, Vol. 193, no. 3, pp. 259-272.
33. Flynn A., Chokkalingam M.B., Mather P.J. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev., 2010, Vol. 15, no. 6, pp. 605-611.
34. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, no. 36, pp. 15880-15885.
35. Garcia J.G., Liu F., Verin A.D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edgdependent cytoskeletal rearrangement. J. Clin. Invest., 2001, Vol. 108, no. 5, pp. 689-701.
36. Gershon M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes., 2013, Vol. 20, no. 1, pp. 14-21.
37. Gholamnezhadjafari R., Falak R., Tajik N., Aflatoonian R., Ali Keshtkar A., Rezaei A. Effect of FTY720 (fingolimod) on graft survival in renal transplant recipients: a systematic review protocol. BMJ Open, 2016, Vol. 6, no. 4, e010114. doi:10.1136/bmjopen-2015-010114.
38. Greco E., Lupia E., Bosco O., Vizio B., Montrucchio G. Platelets and multi-organ failure in sepsis. Int. J. Mol. Sci., 2017, Vol. 18, no. 10, 2200. doi:10.3390/ijms18102200.
39. Grewal P.K., Aziz P.V., Uchiyama S. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell–Morell receptor. Proc. Natl. Acad. Sci. USA, 2013, Vol. 110, no. 50, pp. 20218-20223.
40. Grommes J., Alard J.-E., Drechsler M., Wantha S., Mörgelin M., Kuebler W.M., Jacobs M., von Hundelshausen P., Markart P., Wygrecka M. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am. J. Respir. Crit. Care Med., 2012, Vol. 185, no. 6, pp. 628-636.
41. Grozovsky R., Begonja A.J., Liu K. The Ashwell–Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat. Med., 2015, Vol. 21, no. 1, pp. 47-54.
42. Handel T.M., Johnson Z., Crown S.E., Lau E.K., Proudfoot A.E. Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu. Rev. Biochem., 2005, Vol. 74, pp. 385-410.
43. Hata K., Koseki K., Yamaguchi K. Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob. Agents Chemother., 2008, Vol. 52, no. 10, pp. 3484-3491.
44. Herr N., Bode C., Duerschmied D. The effects of serotonin in immune cells. Front. Cardiovasc. Med., 2017, Vol. 4, 48. doi: 10.3389/fcvm.2017.00048.
45. Hotchkiss R.S., Swanson P.E., Freeman B.D. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med., 1999, Vol. 27, no. 7, pp. 1230-1251.
46. Housinger T.A., Brinkerhoff C., Warden G.D. The relationship between platelet count, sepsis, and survival in pediatric burn patients. Arch Surg., 1993, Vol. 128, no. 1, pp. 65-67.
47. Hui P., Cook DJ M.E., Lim W., Fraser G.A., Arnold D.M. The frequency and clinical significance of thrombocytopenia complicating critical illness. Chest, 2011, Vol. 139, no. 2, pp. 271-278.
48. Jansen A.J., Peng J., Zhao H.G. Sialidase inhibition to increase platelet counts: a new treatment option for thrombocytopenia. Am. J. Hematol., 2015, Vol. 90, no. 5, pp. E94-E95.
49. Karnatovskaia L.V., Festic E. Sepsis: a review for the neurohospitalist. Neurohospitalist, 2012, Vol. 2, no. 4, pp. 144-153.
50. Kelly J.M., Neill A., Rubenfeld G., Masson N., Min A. Using selective serotonin re-uptake inhibitors and serotonin-norepinephrine re-uptake inhibitors in critical care: a systematic review of the evidence for benefit or harm // 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium, 2016. doi: 10.1186/s13054-016-1208-6.
51. Kelton J.G., Neame P.B., Gauldie J., Hirsh J. Elevated platelet-associated IgG in the thrombocytopenia of septicemia. N. Engl. J. Med., 1979, Vol. 300, no. 14, pp. 760-776.
52. Kim W.Y., Hong S.B. Sepsis and acute respiratory distress syndrome: recent update. Tuberc. Respir. Dis. (Seoul), 2016, Vol. 79, no. 2, pp. 53-57.
53. Kitchens C.S., Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood, 1975, Vol. 46, no. 4, pp. 567-578.
54. Kor D.J., Carter R.E., Park P.K. Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA, 2016, Vol. 315, no. 22, pp. 2406-2414.
55. Koyama K., Katayama S., Muronoi T. Time course of immature platelet count and its relation to thrombocytopenia and mortality in patients with sepsis. PloS ONE, 2018, Vol. 13, no. 1, e0192064. doi:10.1371/journal.pone.0192064.
56. Książek M., Chacińska M., Chabowski A., Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J. Lipid Res., 2015, Vol. 56, no. 7, pp. 1271–1281.
57. Lean Q.Y., Gueven N., Eri R.D. Heparins in ulcerative colitis: proposed mechanisms of action and potential reasons for inconsistent clinical outcomes. Expert Rev. Clin. Pharmacol., 2015, Vol. 8, no. 6, pp. 795-811.
58. Levi M., van der Poll T., Schultz M. Systemic versus localized coagulation activation contributing to organ failure in critically ill patients. Semin. Immunopathol., 2012; Vol. 34, no. 1, pp. 167-179.
59. Li M.F., Li X.L., Fan K.L. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J. Hematol. Oncol., 2017, Vol. 10, no. 1, 104. doi:10.1186/s13045-017-0476-1.
60. Ma A.C., Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost., 2008, Vol. 6, no. 3, pp. 415-420.
61. Martin G.S., Mannino D.M., Moss M. The effect of age on the development and outcome of adult sepsis. Crit. Care Med., 2006, Vol. 34, no. 1, pp. 15-21.
62. Mayr F.B., Yende S., Angus D.C. Epidemiology of severe sepsis. Virulence, 2014, Vol. 5, no. 1, pp. 4-11.
63. McDonald B., Urrutia R., Yipp B.G., Jenne C.N., Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe, 2012, Vol. 12, no. 3, pp. 324-333.
64. Monti E., Bonten E., d’Azzo A. Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv. Carbohydr. Chem. Biochem., 2010, Vol. 64, pp. 403-479.
65. Moore M.L., Chi M.H., Zhou W. Cutting edge: oseltamivir decreases T cell GM1 expression and inhibits clearance of respiratory syncytial virus: potential role of endogenous sialidase in antiviral immunity. J. Immunol., 2007, Vol. 178, no. 5, pp. 2651-2654.
66. Moreau D., Timsit J.F., Vesin A. Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest, 2007, Vol. 131, no. 6, pp. 1735-1741.
67. Muhlestein J.B. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb. Haemost., 2010, Vol. 103, no. 1, pp. 71-82.
68. Natarajan V., Dudek S.M., Jacobson J.R. Sphingosine-1-phosphate, FTY720, and sphingosine-1- phosphate receptors in the pathobiology of acute lung injury. Am. J. Respir. Cell Mol. Biol., 2013, Vol. 49, no. 1, pp. 6-17.
69. Neame P.B., Kelton J.G., Walker I.R., Stewart I.O., Nossel H.L., Hirsh J. Thrombocytopenia in septicemia: the role of disseminated intravascular coagulation. Blood, 1980, Vol. 56, no. 1, pp.88-92.
70. Neri M., Riezzo I., Pomara C., Schiavone S., Turillazzi E. Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediators Inflamm., 2016, Vol. 2016, 3423450. doi:10.1155/2016/34234504.
71. Peng X., Hassoun P.M., Sammani S. Protective effects of sphingosine 1-phosphate in murine endotoxininduced inflammatory lung injury. Am. J. Respir. Crit. Care Med., 2004, Vol. 169, no. 11, pp. 1245-1251.
72. Poston J.T., Koyner J.L. Sepsis associated acute kidney injury. BMJ, 2019, Vol. 364, k4891. doi:10.1136/bmj.k489.
73. Puskarich M.A., Kline J.A., Watts J.A., Shirey K., Hosler J., Jones A.E. Early alterations in platelet mitochondrial function are associated with survival and organ failure in patients with septic shock. J. Crit. Care, 2016, Vol. 31, no. 1, pp. 63-67.
74. Ridker P.M., Cushman M., Stampfer M.J., Tracy R.P., Hennekens C.H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med., 1997, Vol. 336, no. 14, pp. 973-979.
75. Rossaint J., Kühne K., Skupski J. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun., 2016, Vol. 7, 13464. doi:10.1038/ncomms13464.
76. Sanchez T., Estrada-Hernandez T., Paik J.H. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem., 2003, Vol. 278, no. 47, pp. 47281-47290.
77. Schaphorst K.L., Chiang E., Jacobs K.N. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, Vol. 285, no. 1, pp. L258-L267.
78. Shaim H., McCaffrey P., Trieu J.A., DeAnda A., Yates S.G. Evaluating the effects of oseltamivir phosphate on platelet counts: a retrospective review. Platelets, 2020, Vol. 31, no. 8, pp. 1080-1084.
79. Shao L., Wu Y., Zhou H. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets, 2015, Vol. 26, no. 5, pp. 495-497.
80. Sharma B., Sharma M., Majumder M., Steier W., Sangal A., Kalawar M. Thrombocytopenia in septic shock patients – a prospective observational study of incidence, risk factors and correlation with clinical outcome. Anaesth. Intensive Care, 2007, Vol. 35, no. 6, pp. 874-880.
81. Shasby D.M., Shasby S.S., Sullivan J.M., Peach M.J. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ. Res., 1982, Vol. 51, no. 5, pp. 657-661.
82. Shi G., Morrell C.N. Platelets as initiators and mediators of inflammation at the vessel wall. Thromb. Res., 2011, Vol. 127, no. 5, pp. 387-390.
83. Singbartl K., Forlow S.B., Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J., 2001, Vol. 15, no. 13, pp. 2337-2344.
84. Singbartl K., Ley K. Leukocyte recruitment and acute renal failure. J. Mol. Med., 2004, Vol. 82, no. 2, pp. 91-101.
85. Singer M., Deutschman C.S., Seymour C.W. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, Vol. 315, no. 8, pp. 801-810.
86. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 2014; Vol. 5, no. 1, pp. 66-72.
87. Sjövall F., Morota S., Persson J., Hansson M.J., Elmér E. Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit. Care, 2013, Vol. 17, no. 4, R152. doi:10.1186/cc12831
88. Speth C., Löffler J., Krappmann S., Lass-Flörl C., Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol., 2013, Vol. 8, no. 11, pp. 1431-1451.
89. Stéphan F., Hollande J., Richard O., Cheffi A., Maier-Redelsperger M., Flahault A. Thrombocytopenia in a surgical ICU. Chest, 1999, Vol. 115, no. 5, pp. 1363-1370.
90. Strauss R., Wehler M., Mehler K., Kreutzer D., Koebnick C., Hahn E.G. Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit. Care Med., 2002, Vol. 30, no. 8, pp. 1765-1771.
91. Taccone F.S., Su F., de Deyne C., Abdellhai A., Pierrakos C., He X. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit. Care Med., 2014, 42, pp. e114-e122.
92. Tavil B., Unal S., Aytaç-Elmas S., Yetgin S. Weekly long-term intravenous immunoglobulin for refractory parvovirus B19 and Epstein-Barr virus-induced immune thrombocytopenic purpura. Turk. J. Pediatr., 2008, Vol. 50, no. 1, pp. 74-77.
93. Thiery-Antier N., Binquet C., Vinault S. Is thrombocytopenia an early prognostic marker in septic shock? Crit. Care Med., 2016, Vol. 44, no. 4, pp. 764-772.
94. Thiolliere F., Serre-Sapin A.F., Reignier J., Benedit M., Constantin J.M., Lebert C. Epidemiology and outcome of thrombocytopenic patients in the intensive care unit: results of a prospective multicenter study. Intensive Care Med., 2013, Vol. 39, no. 8, pp. 1460-1468.
95. Tőkés-Füzesi M., Woth G., Ernyey B., Vermes I., Mühl D., Bogár L., Kovács G.L. Microparticles and acute renal dysfunction in septic patients. J. Crit. Care, 2013, Vol. 28, no. 2, pp. 141-147.
96. Vanderschueren S., de Weerdt A., Malbrain M. Thrombocytopenia and prognosis in intensive care. Crit. Care Med., 2000, Vol. 28, n6, pp. 1871-1876.
97. Vanhoutte P.M. Regenerated endothelium and its senescent response to aggregating platelets. Circ. J., 2016, Vol. 80, no. 4, pp. 783-790.
98. Vardon-Bounes F., Ruiz S., Gratacap M.P., Garcia C., Payrastre B., Minville V. Platelets are critical key players in sepsis. Int. J. Mol. Sci., 2019, Vol. 20, no. 4, 3494. doi:10.3390/ijms20143494.
99. Vincent J.L., Moreno R., Takala J. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med., 1996, Vol. 22, no. 7, pp. 707-710.
100. Weinhart M., Gröger D., Enders S. The role of dimension in multivalent binding events: structure-activity relationship of dendritic polyglycerol sulfate binding to L-selectin in correlation with size and surface charge density. Macromol. Biosci., 2011, Vol. 11, no. 8, pp. 1088-1098.
101. Xiang B., Zhang G., Guo L., Li X. A., Morris A.J., Daugherty A., Whiteheart S.W., Smyth S.S., Li Z. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun., 2013, Vol. 4, 2657. doi: 10.1038/ncomms3657.
102. Yadav H., Kor D.J. Platelets in the pathogenesis of acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, Vol. 309, no. 9, pp. L915-L923.
103. Yadav V.K., Ryu J.H., Suda N. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell, 2008, Vol. 135, no. 5, pp. 825-837.
104. Yang C.H., Guan X.D., Chen J. The study of the mechanism of the effect of heparin on tissue perfusion of sepsis patients. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2008, Vol. 20, no. 9, pp. 550-552.
105. Yiming M.T., Lederer D.J., Sun L., Huertas A., Issekutz A.C., Bhattacharya S. Platelets enhance endothelial adhesiveness in high tidal volume ventilation. Am. J. Respir. Cell Mol. Biol., 2008, Vol. 39, no. 5, pp. 569-575.
106. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res., 2008, Vol. 122, no. 6. pp.743-752.
107. Zarbock A., Singbartl K., Ley K. Complete reversal of acid-induced acute lung injury by blocking of plateletneutrophil aggregation. J. Clin. Invest., 2006, Vol. 116, no. 12, pp. 3211-3219.
108. Zhang J., Pang Q., Song S. Role of serotonin in MODS: deficiency of serotonin protects against zymosaninduced multiple organ failure in mice. Shock, 2015, Vol. 43, no. 3, pp. 276-284.
109. Zucker-Franklin D., Seremetis S., Zheng Z.Y. Internalization of human immunodeficiency virus type I and other retroviruses by megakaryocytes and platelets. Blood, 1990, Vol. 75, no. 10, pp. 1920-1923.
Supplementary files
Review
For citations:
Serebryanaya N.B., Yakutseni P.P. Blood platelets in the development of sepsis, septic shock and multiple organ failure syndrome. Medical Immunology (Russia). 2020;22(6):1085-1096. (In Russ.) https://doi.org/10.15789/1563-0625-BPI-2090