Analysis of regulatory T lymphocytes in fungal infections
https://doi.org/10.15789/1563-0625-AOR-2047
Abstract
Morbidity and mortality rates in invasive mycoses determine the need to improve methods for their timely diagnosis by assessment the patients’ immune status. Evaluation of individual immune status allows the clinician to predict the development and course of fungal infections. At the same time, identification of opportunistic mycosis in immunocompetent patients should require a search for some hidden immune deficiency. Determining the cause of such immune defects can help develop an effective strategy for both etiotropic and immune therapy of patients with invasive mycoses. Currently, the functions of regulatory T lymphocytes that support immunological tolerance in fungal infections remain to be incompletely studied. In this review, we present experimental works which suggest that the regulatory T lymphocytes are able to suppress immune responses to fungi by stimulating the immunosuppressive environment. It was shown that regulatory T lymphocytes use Toll-like receptor 2 to achieve immunosuppression in Candida infections. The balance between the number and function of regulatory T lymphocytes is essential for elimination of fungal pathogens and protection against post-infectious immunopathological conditions. It was found that the regulatory T lymphocytes provide protection at an early stage of Candida infection, since, due to IL-2 suppression, they enhance Th17 differentiation and clearance of fungi. Moreover, at the later stages of infection, the regulatory T lymphocytes have an inhibitory effect. The balance between Th17 and regulatory T lymphocytes in mucosal lining is considered the main factor for distinguishing between commensal carriage and Candida albicans infection. The study is presented which indicate that disseminated candidiasis associated with expansion of regulatory T lymphocytes stimulates a Th17-cell response that controls the course of the disease. The mechanisms that control regulatory T lymphocytes homeostasis are essential for providing effective protection against pathogens, as well as for controlling the immunopathological conditions associated with Candida infection. The review presents data that have established the role of TGF-β1 in increasing the viability of regulatory T lymphocytes, which is correlated with the pronounced immunomodulating role of these cells at the later phase of Candida infections of the mucous membrane. It has been also demonstrated that the pulmonary regulatory Tlymphocytes are induced during cryptococcal infection, which predominantly suppresses Th2 cells, thereby supporting its course. Expansion of the regulatory T lymphocytes upon administration of IL-2/antiIL-2 complex during cryptococcal infection led to a decrease in IgE production and a decrease in allergic airway inflammation. It should be noted that refinement of prognostic value of the regulatory T lymphocytes in human fungal infections may substantiate the basic principles of targeted immunotherapy.
Keywords
About the Authors
S. V. PopovRussian Federation
Popov Sergey V., PhD, MD (Medicine), Professor, Department of General Practice, Clinical Urologist, Medical Institute
Moscow
I. Yu. Shmelkov
Russian Federation
Shmelkov Ilya Yu., Clinical Urologist, PhD Applicant, Department of General Practice, Medical Institute
Moscow
S. V. Khaidukov
Russian Federation
Khaidukov Sergey V., PhD, MD (Biology), Senior Research Associate
117197, Moscow, GSP-7, Miklukho-Maklay str., 16/10
References
1. Klimko N.N. Mycotic sepsis. Sepsis: selected issues of diagnosis and treatment. A practical guide. Ed. N.V. Dmitrieva, I.N. Petukhova, E.G. Gromova]. Moscow: ABV-Press, 2018. pp. 371-388. (In Russ.)
2. Khaidukov S.V., Zurochka A.V. Analysis of t helper subpopulations (Th1, Th2, Treg, Th17, activated T-helpers) by means of flow cytometry. Meditsinskaya immunologiya = Medical Immunology (Russia), 2011, Vol. 13, no. 1, pp. 7-16. (In Russ.) doi: 10.15789/1563-0625-2011-1-7-16.
3. Khaidukov S.V., Zurochka A.V., Totolian Areg A., Chereshnev V.A. Major and lymphocyte populations of human peripheral blood lymphocytes and their reference values, as assayed by multi-colour cytometry. Meditsinskaya immunologiya = Medical Immunology (Russia), 2009, Vol. 11, no. 2-3, pp. 227-238. (In Russ). doi: 10.15789/1563-0625-2009-2-3-227-238.
4. Agostini M., Cenci E., Pericolini E., Nocentini G., Bistoni G., Vecchiarelli A., Riccardi C. The glucocorticoidinduced tumor necrosis factor receptor-related gene modulates the response to Candida albicans infection. Infect. Immun., 2005, Vol. 73, no. 11, pp. 7502-7508.
5. Akira S., Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett., 2003, Vol. 85, pp. 85-95.
6. Armstrong-James D., Meintjes G., Brown G.D. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol., 2014, vol. 22, no. 3, pp. 120-127.
7. Belkaid Y., Piccirillo C.A., Mendez S., Shevach E.M., Sacks D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, Vol. 420, no. 6915, pp. 502-507.
8. Belkaid Y., Rouse B.T. Natural regulatory T cells in infectious disease. Nat. Immunol., 2005, Vol. 6, no. 4, pp. 353-360.
9. Bhaskaran N., Quigley C., Weinberg A., Huang A., Popkin D., Pandiyan P. Transforming growth factor-β1 sustains the survival of Foxp3(+) regulatory cells during late phase of oropharyngeal candidiasis infection. Mucosal Immunol., 2016, Vol. 9, no. 4, pp. 1015-1026.
10. Blackstock R., Murphy J.W. Role of interleukin-4 in resistance to Cryptococcus neoformans infection. Am. J. Respir. Cell Mol. Biol., 2004, vol. 30, no. 1, pp. 109-117.
11. Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and multi-national prevalence of fungal diseasesestimate precision. J. Fungi (Basel), 2017, vol. 3, no.4. pii: E57. doi: 10.3390/jof3040057.
12. Bonifazi P., Zelante T., d’Angelo C., de Luca A., Moretti S., Bozza S., Perruccio K., Iannitti R.G., Giovannini G., Volpi C., Fallarino F., Puccetti P., Romani L. Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol., 2009, Vol. 2, no. 4, pp. 362-374.
13. Bours M.J., Swennen E.L.R., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther., 2006, Vol. 112, no. 2, pp. 358-404.
14. Brown G.D., Denning D.W., Gow N.A., Levitz S.M., Netea M.G., White T.C. Hidden killers: human fungal infections. Sci. Transl. Med., 2012, Vol. 4, no. 165, 165rv13. doi: 10.1126/scitranslmed.3004404.
15. Chang C.C., Levitz S.M. Fungal immunology in clinical practice: magical realism or practical reality? Med. Mycol., 2019, Vol. 57, pp. S294-S306.
16. Coelho C., Tesfa L., Zhang J., Rivera J., Goncalves T., Casadevall A. Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect. Immun., 2012, Vol. 80, no. 4, pp. 1467-1478.
17. Collison L.W., Workman C.J., Kuo T.T., Boyd K., Wang Y., Vignali K.M., Cross R., Sehy D., Blumberg R.S., Vignali D.A.A. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature, 2007, Vol. 450, no. 7169, pp. 566-569.
18. Conti H.R., Shen F., Nayyar N., Stocum E., Sun J.N., Lindemann M.J., Ho A.W., Hai J.H., Yu J.J., Jung J.W., Filler S.G., Masso-Welch P., Edgerton M., Gaffen S.L. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med., 2009, Vol. 206, no. 2, pp. 299-311.
19. Delsing C.E., Gresnigt M.S., Leentjens J., Preijers F., Frager F.A., Kox M., Monneret G., Venet F., BleekerRovers C.P., van de Veerdonk F.L., Pickkers P., Pachot A., Kullberg B.J., Netea M.G. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Dis., 2014, Vol. 14, 166. doi: 10.1186/1471-2334-14-166.
20. Fontenot J.D., Gavin M.A., Rudensky A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, Vol. 4, no. 4, pp. 330-336.
21. Fulton R.B., Meyerholz D.K., Varga S.M. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J. Immunol., 2010, Vol. 185, no. 4, pp. 2382-2392.
22. Giovannetti A., Pierdominici M., di Iorio A., Cianci R., Murdaca G., Puppo F., Pandolfi F., Paganelli R. Apoptosis in the homeostasis of the immune system and in human immune mediated diseases. Curr. Pharm. Des., 2008, Vol. 14, no. 3, pp. 253-268.
23. Grahnert A., Richter T., Piehler D., Eschke M., Schulze B., Müller U., Protschka M., Köhler G., Sabat R., Brombacher F., Alber G. IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection. PLoS ONE, 2014, Vol. 9, no. 1, e87341. doi: 10.1371/journal.pone.0087341.
24. Haeryfar S.M., DiPaolo R.J., Tscharke D.C., Bennink J.R., Yewdell J.W. Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J. Immunol., 2005, Vol. 174, no. 6, pp. 3344-3351.
25. Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, Vol. 299, no. 5609, pp. 1057-1061.
26. Kechichian T.B., Shea J., del Poeta M. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramidedeficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect. Immun., 2007, Vol. 75, no. 10, pp. 4792-4798.
27. Koguchi Y., Kawakami K. Cryptococcal infection and Th1-Th2 cytokine balance. Int. Rev. Immunol., 2002, Vol. 21, no. 4-5, pp. 423-438.
28. Korn T., Bettelli E., Oukka M., Kuchroo V.K. IL-17 and Th17 cells. Annu. Rev. Immunol., 2009, Vol. 27, pp. 485-517.
29. Kostareva O.S., Gabdulkhakov A.G., Kolyadenko I.A., Garber M.B., Tishchenko S.V. Interleukin-17: functional and structural features, application as a therapeutic target. Biochemistry (Mosc.), 2019, Vol. 84, no. 1, pp. 193-205.
30. Lin W., Truong N., Grossman W.J., Haribhai D., Williams C.B., Wang J., Martín M.G., Chatila T.A. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol., 2005, vol. 116, no. 5, pp. 1106-1115.
31. Loebbermann J., Thornton H., Durant L., Sparwasser T., Webster K.E., Sprent J., Culley F.J., Johansson C., Openshaw P.J. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol., 2012, Vol. 5, no. 2, pp. 161-172.
32. Mills K.H. Regulatory T cells: friend or foe in immunity to infection? Nat. Rev. Immunol., 2004, Vol. 4, no. 11, pp. 841-855.
33. Müller U., Stenzel W., Köhler G., Werner C., Polte T., Hansen G., Schütze N., Straubinger R.K., Blessing M., McKenzie A.N., Brombacher F., Alber G. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol., 2007, Vol. 179, no. 8, pp. 5367-5377.
34. Murdock B.J., Huffnagle G.B., Olszewski M.A., Osterholzer J.J. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect. Immun., 2014, Vol. 82, no. 3, pp. 937-948.
35. Netea M.G., Sutmuller R., Hermann C., Van der Graaf C.A., Van der Meer J.W., van Krieken J.H., Hartung T., Adema G., Kullberg B.J. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol., 2004, Vol. 172, no. 6, pp. 3712-3718.
36. Netea M.G., van Der Graaf C.A., Vonk A.G., Verschueren I., van Der Meer J.W., Kullberg B.J. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis., 2002, Vol. 185, no. 10, pp. 1483-1489.
37. Niedbala W., Wei X.-Q., Cai B., Hueber A.J., Leung B.P., McInnes I.B., Liew F.Y. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur. J. Immunol., 2007, Vol. 37, no. 11, pp. 3021-3029.
38. Pandiyan P., Conti H.R., Zheng L., Peterson A.C., Mathern D.R., Hernández-Santos N., Edgerton M., Gaffen S.L., Lenardo M.J. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity, 2011, Vol. 34, no. 3, pp. 422-434.
39. Pandiyan P., Zheng L., Ishihara S., Reed J., Lenardo M.J. CD4+CD25+FoxP3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature. Immunology, 2007, Vol. 8, no. 12, pp. 1353-1362.
40. Park B.J., Wannemuehler K.A., Marston B.J., Govender N., Pappas P.G., Chiller T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS, 2009, Vol. 23, no. 4, pp. 525-530.
41. Read S., Malmstrom V., Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med., 2000, Vol. 192, no. 2, pp. 295-302.
42. Romani L. Immunity to fungal infections. Nat. Rev. Immunol., 2011, Vol. 11, no. 4, pp. 275-288.
43. Ruckwardt T.J., Bonaparte K.L., Nason M.C., Graham B.S. Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities. J. Virol., 2009, Vol. 83, no. 7, pp. 3019-3028.
44. Schmitz I., Schneider C., Fröhlich A., Frebel H., Christ D., Leonard W.J., Sparwasser T., Oxenius A., Freigang S., Kopf M. IL-21 restricts virus-driven Treg cell expansion in chronic LCMV infection. PLoS Pathog., 2013, Vol. 9, no. 5, e1003362. doi: 10.1371/journal.ppat.1003362.
45. Schubert L.A., Jeffery E., Zhang Y., Ramsdell F., Ziegler S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem., 2001, Vol. 276, no. 40, pp. 37672-37679.
46. Schulze B., Piehler D., Eschke M., von Buttlar H., Köhler G., Sparwasser T., Alber G. CD4(+) FoxP3(+) regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection. Eur. J. Immunol., 2014, Vol. 44, no. 12, pp. 3596-3604.
47. Shevach E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol., 2002, Vol. 2, no. 6, pp. 389-400.
48. Shevach E.M. Immunology: regulating suppression. Science, 2008, Vol. 322, no. 5899, pp. 202-203.
49. Shevach E.M. Mechanisms of FoxP3+ T regulatory cell-mediated suppression. Immunity, 2009, Vol. 30, no. 5, pp. 636-645.
50. Shoham S., Levitz S.M. The immune response to fungal infections. Br. J. Haematol., 2005, Vol. 129, no. 5, pp. 569-582.
51. Stephen-Victor E., Bosschem I., Haesebrouck F., Bayry J. The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cell. Microbiol., 2017, Vol.19, no. 6. pp. 1-9.
52. Sutmuller R.P., den Brok M.H., Kramer M., Bennink E.J., Toonen L.W., Kullberg B.J., Joosten L.A., Akira S., Netea M.G., Adema G.J. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest., 2006, Vol. 116, no. 2, pp. 485-494.
53. Szymczak W.A., Sellers R.S., Pirofski L.A. IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17-independent and -dependent mechanisms. Am. J. Pathol., 2012, Vol. 180, no. 4, pp. 1547-1559.
54. Underhill D.M., Ozinsky A., Hajjar A.M., Stevens A., Wilson C.B., Bassetti M., Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, Vol. 401, no. 6755, pp. 811-815.
55. van Hamburg J.P., de Bruijn M.J., de Almeida C.R., van Zwam M., van Meurs M., de Haas E., Boon L., Samsom J.N., Hendriks R.W. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur. J. Immunol., 2008, Vol. 38, pp. 2573-2586.
56. von Boehmer H., Daniel C. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat. Rev. Drug Discov., 2013, Vol. 12, no. 1, pp. 51-63.
57. Whibley N., Gaffen S.L. Brothers in arms: Th17 and Treg responses in Candida albicans immunity. PLoS Pathog., 2014, Vol. 10, no. 12, e1004456. doi: 10.1371/journal.ppat.1004456.
58. Whibley N., MacCallum D.M., Vickers M.A., Zafreen S., Waldmann H., Hori S., Gaffen S.L., Gow N.A.R., Barker R.N., Hall A.M. Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur. J. Immunol., 2014, Vol. 44, pp. 1069-1083.
59. Wildin R.S., Smyk-Pearson S., Filipovich A.H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet., 2002, Vol. 39, no. 8, pp. 537-545.
60. Wing J.B., Sakaguchi S. Foxp3(+) T(reg) cells in humoral immunity. Int. Immunol., 2014, Vol. 26, no. 2, pp. 61-69.
61. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over FoxP3+ regulatory T cell function. Science, 2008, Vol. 322, no. 5899, pp. 271-275.
Supplementary files
Review
For citations:
Popov S.V., Shmelkov I.Yu., Khaidukov S.V. Analysis of regulatory T lymphocytes in fungal infections. Medical Immunology (Russia). 2020;22(6):1055-1064. (In Russ.) https://doi.org/10.15789/1563-0625-AOR-2047