Dependence of phenotype and chemiluminescent activity of monocytes on the Tregulatory cells content in patients with kidney cancer
https://doi.org/10.15789/1563-0625-DOP-1890
Abstract
Keywords
About the Authors
A. A. SavchenkoRussian Federation
Savchenko Andrei Anatyevich - PhD, MD (Medicine), Professor, Head, Laboratory of Molecular and Cellular Physiology and Pathology.
Krasnoyarsk
Competing Interests: not
A. G. Borisov
Russian Federation
Borisov Alexandr Gennadyevich - PhD (Medicine), Leading Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology.
Krasnoyarsk
Competing Interests: not
I. V. Kudryavtsev
Russian Federation
Kudryavtsev Igor V. - PhD (Biology), Senior Research Associate, Department of Immunology, IEM; Associate Professor, Department of Immunology, First St.PSI. Pavlov MU.
197376, St. Petersburg, Acad. Pavlov str., 12, Phone: 7(812) 234-16-69
Competing Interests: not
A. V. Moshev
Russian Federation
Moshev Anton Viktorovich - Junior Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology.
Krasnoyarsk
Competing Interests: not
References
1. Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.U., Thepen T., Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines, 2017, Vol. 5, no. 3, pii: E56. doi: 10.3390/biomedicines5030056.
2. Bharat A., McQuattie-Pimentel A.C., Budinger G.R.S. Non-classical monocytes in tissue injury and cancer. Oncotarget, 2017, Vol. 8, no. 63, pp. 106171-106172. doi: 10.18632/oncotarget.22584.
3. Biller J.D., Takahashi L.S. Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Cienc., 2018, Vol. 90, no. 4, pp. 3403-3414. doi: 10.1590/0001-3765201820170730.
4. Buscher K., Marcovecchio P., Hedrick C.C., Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front. Cardiovasc. Med., 2017, Vol. 4, pp. 80. doi: 10.3389/fcvm.2017.00080.
5. Cranford T.L., Velázquez K.T., Enos R.T., Bader J.E., Carson M.S., Chatzistamou I., Nagarkatti M., Murphy E.A. Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol. Ther., 2017, Vol. 18, no. 2, pp. 85-93. doi: 10.1080/15384047.2016.1276135.
6. Fridman W.H. From Cancer Immune Surveillance to Cancer Immunoediting: Birth of Modern Immuno-Oncology. J. Immunol., 2018, Vol. 201, no. 3, pp. 825-826. doi: 10.4049/jimmunol.1800827.
7. Gordon S. Targeting a monocyte subset to reduce inflammation. Circ. Res., 2012, Vol. 110, no. 12, pp. 1546-1548. doi: 10.1161/RES.0b013e31825ec26d.
8. Jan H.C., Yang W.H., Ou C.H. Combination of the Preoperative Systemic Immune-Inflammation Index and Monocyte-Lymphocyte Ratio as a Novel Prognostic Factor in Patients with Upper-Tract Urothelial Carcinoma. Ann. Surg. Oncol., 2019, Vol. 26, no. 2, pp. 669-684. doi: 10.1245/s10434-018-6942-3.
9. Jones M.B., Alvarez C.A., Johnson J.L., Zhou J.Y., Morris N., Cobb B.A. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One, 2019, Vol. 14, no. 5, e0216893. doi: 10.1371/journal.pone.0216893.
10. Juhas U., Ryba-Stanisławowska M., Brandt-Varma A., Myśliwiec M., Myśliwska J. Monocytes of newly diagnosed juvenile DM1 patients are prone to differentiate into regulatory IL-10(+) M2 macrophages. Immunol. Res., 2019, Vol. 67, no. 1, pp. 58-69. doi: 10.1007/s12026-019-09072-0.
11. Komala A.S., Rachman A. Association of Peripheral Monocyte Count with Soluble P-Selectin and Advanced Stages in Nasopharyngeal Carcinoma. Adv. Hematol., 2018, 2018:3864398. doi: 10.1155/2018/3864398.
12. Komura T., Sakai Y., Harada K., Kawaguchi K., Takabatake H., Kitagawa H., Wada T., Honda M., Ohta T., Nakanuma Y., Kaneko S. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. Cancer Sci., 2015, Vol. 106, no. 6, pp. 672-686. doi: 10.1111/cas.12663.
13. Kong B.S., Kim Y., Kim G.Y., Hyun J.W., Kim S.H., Jeong A., Kim H.J. Increased frequency of IL-6-producing non-classical monocytes in neuromyelitis optica spectrum disorder. J. Neuroinflammation, 2017, Vol. 14, no. 1, pp. 191. doi: 10.1186/s12974-017-0961-z.
14. Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology, 2015, Vol. 17, no. 1, pp. 19-26. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология.–2015.–Т. 17, № 1.–С. 19-26. https://doi.org/10.15789/1563-0625-2015-1-19-26
15. Li X., Chen Y., Liu X., Zhang J., He X., Teng G., Yu D. Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int. Immunopharmacol., 2017, Vol. 44, pp. 153-159. doi: 10.1016/j.intimp.2017.01.006.
16. Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200. DOI: 10.1038/nri3158.
17. Mahmoodpoor A., Paknezhad S., Shadvar K., Hamishehkar H., Movassaghpour A.A., Sanaie S., Ghamari A.A., Soleimanpour H. Flow Cytometry of CD64, HLA-DR, CD25, and TLRs for Diagnosis and Prognosis of Sepsis in Critically Ill Patients Admitted to the Intensive Care Unit: A Review Article. Anesth. Pain Med., 2018, Vol. 8, no. 6, e83128. doi: 10.5812/aapm.83128.
18. Moreau R., Périanin A., Arroyo V. Review of Defective NADPH Oxidase Activity and Myeloperoxidase Release in Neutrophils From Patients With Cirrhosis. Front. Immunol., 2019, Vol. 10, pp. 1044. doi: 10.3389/fimmu.2019.01044.
19. Mukherjee R., Kanti Barman P., Kumar Thatoi P., Tripathy R., Kumar Das B., Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep., 2015, Vol. 5, pp. 13886. doi: 10.1038/srep13886.
20. Naranjo-Gómez J.S., Castillo J.A., Rojas M., Restrepo B.N., Diaz F.J., Velilla P.A., Castaño D. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology, 2019, Vol. 156, no. 2, pp. 147-163. doi: 10.1111/imm.13011.
21. Narasimhan P.B., Marcovecchio P., Hamers A.A.J., Hedrick C.C. Nonclassical Monocytes in Health and Disease. Annu. Rev. Immunol., 2019, Vol. 37, pp. 439-456. doi: 10.1146/annurev-immunol-042617-053119.
22. O'Donnell J.S., Teng M.W.L., Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, Vol. 16, no. 3, pp. 151-167. doi: 10.1038/s41571-018-0142-8.
23. Pence B.D., Yarbro J.R. Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults. Immun. Ageing, 2019, Vol. 16, pp. 3. doi: 10.1186/s12979-019-0143-1.
24. Pohar J., Simon Q., Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4(+)FOXP3(+) T Regulatory Cells. Front. Immunol., 2018, Vol. 9, pp. 1701. doi: 10.3389/fimmu.2018.01701.
25. Ramello M.C., Tosello Boari J., Canale F.P., Mena H.A., Negrotto S., Gastman B., Gruppi A., Acosta Rodríguez E.V., Montes C.L. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L. Cell Death Dis., 2014, Vol. 5, e1507. doi: 10.1038/cddis.2014.451.
26. Romano E., Kusio-Kobialka M., Foukas P.G., Baumgaertner P., Meyer C., Ballabeni P., Michielin O., Weide B., Romero P., Speiser D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA, 2015, Vol. 112, no. 19, pp. 6140-6145. doi: 10.1073/pnas.1417320112.
27. Sabir F., Farooq R.K., Asim Ur. Rehman, Ahmed N. Monocyte as an Emerging Tool for Targeted Drug Delivery: A Review. Curr. Pharm. Des., 2018, Vol. 24, no. 44, pp. 5296-5312. doi: 10.2174/1381612825666190102104642.
28. Salminen A., Kauppinen A., Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, Vol. 19, no. 5, pp. 325-339. doi: 10.1007/s10522-018-9762-8.
29. Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical Immunology, 2015, Vol. 17, no. 2, pp. 141-150. Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечно-клеточным раком // Медицинская иммунология.2015.Т. 17, № 2.С. 141-150. https://doi.org/10.15789/1563-0625-2015-2-141-150
30. Savchenko A.A., Kudryavtsev I.V., Borisov A.G. Methods of estimation and the role of respiratory burst in the pathogenesis of infectious and inflammatory diseases. Russian Journal of Infection and Immunity, 2017, Vol. 7, no. 4, pp. 327-340. Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно-воспалительных заболеваний // Инфекция и иммунитет.2017.Т. 7б № 4.С. 327-340. https://doi.org/10.15789/2220-7619-2017-4-327-340
31. Savchenko A.A., Zdzitovetskii D.E., Borisov A.G., Luzan N.A. Chemiluminescent and enzyme activity of neutrophils in patients with widespread purulent peritonitis depending on the outcome of disease. Annals of the Russian academy of medical sciences, 2014, Vol. 69, no. 5-6, pp. 23-28. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания // Вестник Российской академии медицинских наук.2014.Т. 69, № 5-6.С. 23-28. https://doi.org/10.15690/vramn.v69i5-6.1039
32. Schierer S., Ostalecki C., Zinser E., Lamprecht R., Plosnita B., Stich L., Dörrie J., Lutz M.B., Schuler G., Baur A.S. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance, 2018, Vol. 1, no. 6, e201800093. doi: 10.26508/lsa.201800093.
33. Shevach E.M. Foxp3(+) T Regulatory Cells: Still Many Unanswered Questions-A Perspective After 20 Years of Study. Front. Immunol., 2018, Vol. 9, pp. 1048. doi: 10.3389/fimmu.2018.01048.
34. Stansfield B.K., Ingram D.A. Clinical significance of monocyte heterogeneity. Clin. Transl. Med., 2015, Vol. 4, pp. 5. doi: 10.1186/s40169-014-0040-3
35. van de Geer A., Cuadrado E., Slot M.C., van Bruggen R., Amsen D., Kuijpers T.W. Regulatory T cell features in chronic granulomatous disease. Clin. Exp. Immunol., 2019, Vol. 197, no. 2, pp. 222-229. doi: 10.1111/cei.13300.
36. Wagner M., Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. Trends Immunol., 2019, Vol. 40, no. 5, pp. 415-430. doi: 10.1016/j.it.2019.03.004.
37. Wouters K., Gaens K., Bijnen M., Verboven K., Jocken J., Wetzels S., Wijnands E., Hansen D., van Greevenbroek M., Duijvestijn A., Biessen E.A., Blaak E.E., Stehouwer C.D., Schalkwijk C.G. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci. Rep., 2017, Vol. 7, pp. 42665. doi: 10.1038/srep42665.
38. Yu C.X., Bai L.Y., Lin J.J., Li S.B., Chen J.Y., He W.J., Yu X.M., Cui X.P., Wang H.L., Chen Y.Z., Zhu L. rhPLD2 inhibits airway inflammation in an asthmatic murine model through induction of stable CD25(+) Foxp3(+) Tregs. Mol. Immunol., 2018, Vol. 101, pp. 539-549. doi: 10.1016/j.molimm.2018.07.030.
39. Zarif J.C., Hernandez J.R., Verdone J.E., Campbell S.P., Drake C.G., Pienta K.J. A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells. Biotechniques, 2016, Vol. 61, no. 1, pp. 33-41. doi: 10.2144/000114435.
40. Zhuang Y., Peng H., Chen Y., Zhou S., Chen Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. (Landmark Ed), 2017, Vol. 22, pp. 1344-1354. DOI: 10.2741/4547.
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(52KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(23KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(31KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(71KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(76KB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(132KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(181KB)
|
Indexing metadata ▾ |
![]() |
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(63KB)
|
Indexing metadata ▾ |
Review
For citations:
Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Moshev A.V. Dependence of phenotype and chemiluminescent activity of monocytes on the Tregulatory cells content in patients with kidney cancer. Medical Immunology (Russia). 2020;22(2):347-356. https://doi.org/10.15789/1563-0625-DOP-1890