Preview

Medical Immunology (Russia)

Advanced search

Dependence of phenotype and chemiluminescent activity of monocytes on the Tregulatory cells content in patients with kidney cancer

https://doi.org/10.15789/1563-0625-DOP-1890

Abstract

The aim of this work was to reveal the interrelations between the number of T regulatory cells (Tregs) in patients with kidney cancer (KC) and phenotype of peripheral blood monocytes and their capacities to produce ROS. Patients with KC (T3N0M0, clear cell type) were examined prior to surgical treatment. Tregs phenotype and blood monocytes were identified by flow cytometry. ROS production of purified monocytes was carried out through the determination of lucigenin- and luminol-dependent spontaneous and zymosan-induced chemiluminescence activity. It has been found that the relative number of Tregs within total lymphocyte subset in KC patients was increased if compared to control values (in KC patients — Me = 6.3%). Then the patients were divided into two groups according to the median of Tregs number (less and more than 6.3%). The most pronounced changes in the phenotype of monocytes and their chemiluminescent activity were found in KC patients with the Tregs count of less than 6.3%. Our findings suggest that low frequency of Tregs in the periphery was associated with increased relative numbers of “intermediate” and “non-classical” (“pro-inflammatory”) monocytes as it was shown on the samples from patients with KC with a low level of Tregs. According to our data, both groups of KC patients had low levels of HLA-DR expression when comparing to control group. Furthermore, both groups of patients had decreased rates of HLA-DR and CD64 co-expressing cells. Changes in the phenotype of monocytes in patients with KC were closely linked with imbalance in ROS production. Thus, the monocytes spontaneous superoxide radical (primary ROS) synthesis in KC patients with a low Treg numbers were characterized by redused NADPH-oxidase activation time and increased level of its activity if compared to patients with a high Treg rates in peripheral blood. Next, the activation index for lucigenin-dependent chemiluminescence in KC patients was reduced, as well as it was independent of circulating Tregs rates and was determined apparently by the insufficiency of metabolic reserves. Similarly, spontaneous secondary ROS production by the monocytes in KC patients was lower then in healthy controls and was also independent of circulating Tregs rates. Finally, the induced secondary ROS synthesis and activation index for their synthesis in monocytes were reduced only in patients with KC with a low number of Tregs in the blood. In general, the characteristics of the chemiluminescent reaction of monocytes in patients with KC determined the imbalance in peripheral blood monocytes primary and secondary ROS production. Monocytes in patients with KC with a low number of Tregs in the blood were characterized by more pro-inflammatory activity due to the rapid activation and intensity of the synthesis of primary ROS.

About the Authors

A. A. Savchenko
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

Savchenko Andrei Anatyevich - PhD, MD (Medicine), Professor, Head, Laboratory of Molecular and Cellular Physiology and Pathology.

Krasnoyarsk


Competing Interests: not


A. G. Borisov
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

Borisov Alexandr Gennadyevich - PhD (Medicine), Leading Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology.

Krasnoyarsk


Competing Interests: not


I. V. Kudryavtsev
Institute of Experimental Medicine; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Kudryavtsev Igor V. - PhD (Biology), Senior Research Associate, Department of Immunology, IEM; Associate Professor, Department of Immunology, First St.PSI. Pavlov MU.

197376, St. Petersburg, Acad. Pavlov str., 12, Phone: 7(812) 234-16-69


Competing Interests: not


A. V. Moshev
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

Moshev Anton Viktorovich - Junior Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology.

Krasnoyarsk


Competing Interests: not


References

1. Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.U., Thepen T., Barth S. CD64: An Attractive Immunotherapeutic Target for M1-type Macrophage Mediated Chronic Inflammatory Diseases. Biomedicines, 2017, Vol. 5, no. 3, pii: E56. doi: 10.3390/biomedicines5030056.

2. Bharat A., McQuattie-Pimentel A.C., Budinger G.R.S. Non-classical monocytes in tissue injury and cancer. Oncotarget, 2017, Vol. 8, no. 63, pp. 106171-106172. doi: 10.18632/oncotarget.22584.

3. Biller J.D., Takahashi L.S. Oxidative stress and fish immune system: phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Cienc., 2018, Vol. 90, no. 4, pp. 3403-3414. doi: 10.1590/0001-3765201820170730.

4. Buscher K., Marcovecchio P., Hedrick C.C., Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front. Cardiovasc. Med., 2017, Vol. 4, pp. 80. doi: 10.3389/fcvm.2017.00080.

5. Cranford T.L., Velázquez K.T., Enos R.T., Bader J.E., Carson M.S., Chatzistamou I., Nagarkatti M., Murphy E.A. Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol. Ther., 2017, Vol. 18, no. 2, pp. 85-93. doi: 10.1080/15384047.2016.1276135.

6. Fridman W.H. From Cancer Immune Surveillance to Cancer Immunoediting: Birth of Modern Immuno-Oncology. J. Immunol., 2018, Vol. 201, no. 3, pp. 825-826. doi: 10.4049/jimmunol.1800827.

7. Gordon S. Targeting a monocyte subset to reduce inflammation. Circ. Res., 2012, Vol. 110, no. 12, pp. 1546-1548. doi: 10.1161/RES.0b013e31825ec26d.

8. Jan H.C., Yang W.H., Ou C.H. Combination of the Preoperative Systemic Immune-Inflammation Index and Monocyte-Lymphocyte Ratio as a Novel Prognostic Factor in Patients with Upper-Tract Urothelial Carcinoma. Ann. Surg. Oncol., 2019, Vol. 26, no. 2, pp. 669-684. doi: 10.1245/s10434-018-6942-3.

9. Jones M.B., Alvarez C.A., Johnson J.L., Zhou J.Y., Morris N., Cobb B.A. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One, 2019, Vol. 14, no. 5, e0216893. doi: 10.1371/journal.pone.0216893.

10. Juhas U., Ryba-Stanisławowska M., Brandt-Varma A., Myśliwiec M., Myśliwska J. Monocytes of newly diagnosed juvenile DM1 patients are prone to differentiate into regulatory IL-10(+) M2 macrophages. Immunol. Res., 2019, Vol. 67, no. 1, pp. 58-69. doi: 10.1007/s12026-019-09072-0.

11. Komala A.S., Rachman A. Association of Peripheral Monocyte Count with Soluble P-Selectin and Advanced Stages in Nasopharyngeal Carcinoma. Adv. Hematol., 2018, 2018:3864398. doi: 10.1155/2018/3864398.

12. Komura T., Sakai Y., Harada K., Kawaguchi K., Takabatake H., Kitagawa H., Wada T., Honda M., Ohta T., Nakanuma Y., Kaneko S. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. Cancer Sci., 2015, Vol. 106, no. 6, pp. 672-686. doi: 10.1111/cas.12663.

13. Kong B.S., Kim Y., Kim G.Y., Hyun J.W., Kim S.H., Jeong A., Kim H.J. Increased frequency of IL-6-producing non-classical monocytes in neuromyelitis optica spectrum disorder. J. Neuroinflammation, 2017, Vol. 14, no. 1, pp. 191. doi: 10.1186/s12974-017-0961-z.

14. Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology, 2015, Vol. 17, no. 1, pp. 19-26. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология.–2015.–Т. 17, № 1.–С. 19-26. https://doi.org/10.15789/1563-0625-2015-1-19-26

15. Li X., Chen Y., Liu X., Zhang J., He X., Teng G., Yu D. Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int. Immunopharmacol., 2017, Vol. 44, pp. 153-159. doi: 10.1016/j.intimp.2017.01.006.

16. Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, Vol. 12, pp. 191-200. DOI: 10.1038/nri3158.

17. Mahmoodpoor A., Paknezhad S., Shadvar K., Hamishehkar H., Movassaghpour A.A., Sanaie S., Ghamari A.A., Soleimanpour H. Flow Cytometry of CD64, HLA-DR, CD25, and TLRs for Diagnosis and Prognosis of Sepsis in Critically Ill Patients Admitted to the Intensive Care Unit: A Review Article. Anesth. Pain Med., 2018, Vol. 8, no. 6, e83128. doi: 10.5812/aapm.83128.

18. Moreau R., Périanin A., Arroyo V. Review of Defective NADPH Oxidase Activity and Myeloperoxidase Release in Neutrophils From Patients With Cirrhosis. Front. Immunol., 2019, Vol. 10, pp. 1044. doi: 10.3389/fimmu.2019.01044.

19. Mukherjee R., Kanti Barman P., Kumar Thatoi P., Tripathy R., Kumar Das B., Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci. Rep., 2015, Vol. 5, pp. 13886. doi: 10.1038/srep13886.

20. Naranjo-Gómez J.S., Castillo J.A., Rojas M., Restrepo B.N., Diaz F.J., Velilla P.A., Castaño D. Different phenotypes of non-classical monocytes associated with systemic inflammation, endothelial alteration and hepatic compromise in patients with dengue. Immunology, 2019, Vol. 156, no. 2, pp. 147-163. doi: 10.1111/imm.13011.

21. Narasimhan P.B., Marcovecchio P., Hamers A.A.J., Hedrick C.C. Nonclassical Monocytes in Health and Disease. Annu. Rev. Immunol., 2019, Vol. 37, pp. 439-456. doi: 10.1146/annurev-immunol-042617-053119.

22. O'Donnell J.S., Teng M.W.L., Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, Vol. 16, no. 3, pp. 151-167. doi: 10.1038/s41571-018-0142-8.

23. Pence B.D., Yarbro J.R. Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults. Immun. Ageing, 2019, Vol. 16, pp. 3. doi: 10.1186/s12979-019-0143-1.

24. Pohar J., Simon Q., Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4(+)FOXP3(+) T Regulatory Cells. Front. Immunol., 2018, Vol. 9, pp. 1701. doi: 10.3389/fimmu.2018.01701.

25. Ramello M.C., Tosello Boari J., Canale F.P., Mena H.A., Negrotto S., Gastman B., Gruppi A., Acosta Rodríguez E.V., Montes C.L. Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L. Cell Death Dis., 2014, Vol. 5, e1507. doi: 10.1038/cddis.2014.451.

26. Romano E., Kusio-Kobialka M., Foukas P.G., Baumgaertner P., Meyer C., Ballabeni P., Michielin O., Weide B., Romero P., Speiser D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA, 2015, Vol. 112, no. 19, pp. 6140-6145. doi: 10.1073/pnas.1417320112.

27. Sabir F., Farooq R.K., Asim Ur. Rehman, Ahmed N. Monocyte as an Emerging Tool for Targeted Drug Delivery: A Review. Curr. Pharm. Des., 2018, Vol. 24, no. 44, pp. 5296-5312. doi: 10.2174/1381612825666190102104642.

28. Salminen A., Kauppinen A., Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology, 2018, Vol. 19, no. 5, pp. 325-339. doi: 10.1007/s10522-018-9762-8.

29. Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical Immunology, 2015, Vol. 17, no. 2, pp. 141-150. Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечно-клеточным раком // Медицинская иммунология.2015.Т. 17, № 2.С. 141-150. https://doi.org/10.15789/1563-0625-2015-2-141-150

30. Savchenko A.A., Kudryavtsev I.V., Borisov A.G. Methods of estimation and the role of respiratory burst in the pathogenesis of infectious and inflammatory diseases. Russian Journal of Infection and Immunity, 2017, Vol. 7, no. 4, pp. 327-340. Савченко А.А., Кудрявцев И.В., Борисов А.Г. Методы оценки и роль респираторного взрыва в патогенезе инфекционно-воспалительных заболеваний // Инфекция и иммунитет.2017.Т. 7б № 4.С. 327-340. https://doi.org/10.15789/2220-7619-2017-4-327-340

31. Savchenko A.A., Zdzitovetskii D.E., Borisov A.G., Luzan N.A. Chemiluminescent and enzyme activity of neutrophils in patients with widespread purulent peritonitis depending on the outcome of disease. Annals of the Russian academy of medical sciences, 2014, Vol. 69, no. 5-6, pp. 23-28. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная и энзиматическая активность нейтрофильных гранулоцитов у больных распространенным гнойным перитонитом в зависимости от исхода заболевания // Вестник Российской академии медицинских наук.2014.Т. 69, № 5-6.С. 23-28. https://doi.org/10.15690/vramn.v69i5-6.1039

32. Schierer S., Ostalecki C., Zinser E., Lamprecht R., Plosnita B., Stich L., Dörrie J., Lutz M.B., Schuler G., Baur A.S. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance, 2018, Vol. 1, no. 6, e201800093. doi: 10.26508/lsa.201800093.

33. Shevach E.M. Foxp3(+) T Regulatory Cells: Still Many Unanswered Questions-A Perspective After 20 Years of Study. Front. Immunol., 2018, Vol. 9, pp. 1048. doi: 10.3389/fimmu.2018.01048.

34. Stansfield B.K., Ingram D.A. Clinical significance of monocyte heterogeneity. Clin. Transl. Med., 2015, Vol. 4, pp. 5. doi: 10.1186/s40169-014-0040-3

35. van de Geer A., Cuadrado E., Slot M.C., van Bruggen R., Amsen D., Kuijpers T.W. Regulatory T cell features in chronic granulomatous disease. Clin. Exp. Immunol., 2019, Vol. 197, no. 2, pp. 222-229. doi: 10.1111/cei.13300.

36. Wagner M., Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. Trends Immunol., 2019, Vol. 40, no. 5, pp. 415-430. doi: 10.1016/j.it.2019.03.004.

37. Wouters K., Gaens K., Bijnen M., Verboven K., Jocken J., Wetzels S., Wijnands E., Hansen D., van Greevenbroek M., Duijvestijn A., Biessen E.A., Blaak E.E., Stehouwer C.D., Schalkwijk C.G. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci. Rep., 2017, Vol. 7, pp. 42665. doi: 10.1038/srep42665.

38. Yu C.X., Bai L.Y., Lin J.J., Li S.B., Chen J.Y., He W.J., Yu X.M., Cui X.P., Wang H.L., Chen Y.Z., Zhu L. rhPLD2 inhibits airway inflammation in an asthmatic murine model through induction of stable CD25(+) Foxp3(+) Tregs. Mol. Immunol., 2018, Vol. 101, pp. 539-549. doi: 10.1016/j.molimm.2018.07.030.

39. Zarif J.C., Hernandez J.R., Verdone J.E., Campbell S.P., Drake C.G., Pienta K.J. A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells. Biotechniques, 2016, Vol. 61, no. 1, pp. 33-41. doi: 10.2144/000114435.

40. Zhuang Y., Peng H., Chen Y., Zhou S., Chen Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. (Landmark Ed), 2017, Vol. 22, pp. 1344-1354. DOI: 10.2741/4547.


Supplementary files

1. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (52KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (23KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (31KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (71KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (76KB)    
Indexing metadata ▾
6. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (132KB)    
Indexing metadata ▾
7. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (181KB)    
Indexing metadata ▾
8. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (63KB)    
Indexing metadata ▾

Review

For citations:


Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Moshev A.V. Dependence of phenotype and chemiluminescent activity of monocytes on the Tregulatory cells content in patients with kidney cancer. Medical Immunology (Russia). 2020;22(2):347-356. https://doi.org/10.15789/1563-0625-DOP-1890

Views: 834


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)