NATURAL KILLER CELL EFFECTS UPON ANGIOGENESIS UNDER CONDITIONS OF CONTACT-DEPENDENT AND DISTANT CO-CULTURING WITH ENDOTHELIAL AND TROPHOBLAST CELLS
https://doi.org/10.15789/1563-0625-2019-3-427-440
Abstract
Regulation of angiogenesis in the utero-placental bed determines adequate trophoblast invasion, placenta formation and development, as well as successful course of pregnancy. Natural killer (NK) cells, macrophages and trophoblast have the most significant effect on angiogenesis. To date, the functions of cells participating in placenta formation have been described in detail, both individually (in vitrо) and in tissues (in situ). However, no models have yet been created that reflect the interactions of NK cells, trophoblast and endothelium during angiogenesis. It remains unclear, how each cell population contributes to placental angiogenesis regulation, and to the cross-regulation of participating cell functions. Therefore, the aim of this research was to study contact and distant effects of NK cells upon formation of tube-like structures through co-culture of endothelial and trophoblast cells influenced by various cytokines (bFGF, VEGF, PlGF, TGF-β, IL-8, IFNγ and IL-1β). Introduction of NK cells to the co-culture of endothelial and trophoblast cells under conditions of both contact and distance-dependent culturing did not change the length of tube-like structures formed by endothelial cells. During contact-dependent culturing of NK cells with co-culture of endothelial and trophoblast cells in presence of IL-1β, the length of tubule-like structures remained unchanged, compared with the length of tube-like structures formed under the same culturing conditions, but without the cytokine added. During distant culturing of NK cells with co-culture of endothelial and trophoblast cells in the presence of IL-1β, the length of tube-like structures increased as compared with those formed under the same culturing conditions but without the cytokine. During contact-dependent (but not distant) culturing of NK cells with the co-culture of endothelial and trophoblast cells in the presence of VEGF, the length of tube-like structures was greater than those formed under the same culturing conditions but without the cytokine. When used in a three-component cell system, the pro-inflammatory cytokine IFNγhad no effect upon angiogenesis. During distant (but not contact-dependent) culturing of NK cells with co-culture of endothelial and trophoblast cells in the presence of TGF-β, the length of tube-like structures was less than the length of tube-like structures formed under the same culturing conditions but without the cytokine. Under conditions of distant culturing, TGF-βtriggered a signal in NK cells that inhibited angiogenesis. Decreased length of tube-like structures under conditions of a three-component cell co-culture in the presence of the following pro-angiogenic factors was revealed: IL-8, PlGF (during contact-dependent culturing only) and bFGF (during both contact-dependent and distant culturing). Thus, the effects of cytokines upon angiogenesis in a three-component co-culture (NK cells, trophoblast and endothelium) differed from those revealed previously in single-component (endothelium only) and two-component (co-culture of endothelium and trophoblast) cell models. The results of these experiments indicated that regulation of placental cell interactions involved both cellular contacts and effects produced by cytokines.
About the Authors
K. L. MarkovaRussian Federation
Junior Research Associate, Cell Interactions Laboratory, Department of Immunology and Cell Interactions
199034, St. Petersburg, Mendeleevskaya line, 3.
Phone: 7 (812) 323-75-45, 328-98-50. Fax: 7 (812) 323-75-45.
O. I. Stepanova
Russian Federation
PhD (Biology), Senior Research Associate, Cell Interactions Laboratory, Department of Immunology and Cell Interactions
St. Petersburg
A. R. Sheveleva
Russian Federation
Researcher, Cell Interactions Laboratory, Department of Immunology and Cell Interactions
St. Petersburg
N. A. Kostin
Russian Federation
Associate
St. Petersburg
V. A. Mikhailova
Russian Federation
PhD (Biology), Senior Research Associate, Cell Interactions Laboratory, Department of Immunology and Cell Interactions; Senior Lecturer
St. Petersburg
S. A. Selkov
Russian Federation
PhD, MD (Medicine), Professor, Head, Immunology and Cell Interactions Department
St. Petersburg
D. I. Sokolov
Russian Federation
PhD, MD (Biology), Head, Cell Interactions Laboratory; Associate Professor
St. Petersburg
References
1. Ailamazian E.K., Stepanova O.I., Selkov S.A., Sokolov D.I. Cells of immune system of mother and trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose. Vestnik Rossiyskoy akademii meditsinskikh nauk = Bulletin of the Russian Academy of Medical Sciences, 2013, no. 11, pp. 12-21. (In Russ.)
2. Selkov S.A., Sokolov D.I. Immunologic control of placenta development. Zhurnal akusherstva i zhenskikh bolezney = Journal of Obstetrics and Women Diseases, 2010, Vol. 59, no. 1, pp. 6-11. (In Russ.)
3. Sokolov D.I., Selkov S.A. Decidual macrophages: role in immune dialogue between mother and fetus. Immunologiya = Immunology, 2014, Vol. 35, no. 2, pp. 113-117. (In Russ.)
4. Sokolov D.I., Selkov S.A. Immunological control of vascular network of the placenta development. St. Petersburg: N-L, 2012. 208 p.
5. Agostinis C., Bossi F., Masat E., Radillo O., Tonon M., de Seta F., Tedesco F., Bulla R. MBL interferes with endovascular trophoblast invasion in pre-eclampsia. Clin. Dev. Immunol., 2012, Vol. 2012, 484321. doi: 10.1155/2012/484321.
6. Arnaoutova I., George J., Kleinman H.K., Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis, 2009, Vol. 12, no. 3, pp. 267-274.
7. Ashkar A.A., di Santo J.P., Croy B.A. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J. Exp. Med., 2000, Vol. 192, no. 2, pp. 259-270.
8. Athanassiades A., Lala P.K. Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta, 1998, Vol. 19, no. 7, pp. 465-473.
9. Augustin H.G. Angiogenesis in the female reproductive system. EXS, 2005, no. 94, pp. 35-52.
10. Benton G., Kleinman H.K., George J., Arnaoutova I. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitroand in vivowith cancer cells. Int. J. Cancer, 2011, Vol. 128, no. 8, pp. 1751-1757.
11. Blaschitz A., Lenfant F., Mallet V., Hartmann M., Bensussan A., Geraghty D.E., le Bouteiller P., Dohr G. Endothelial cells in chorionic fetal vessels of first trimester placenta express HLA-G. Eur. J. Immunol., 1997, Vol. 27, no. 12, pp. 3380-3388.
12. Bulla R., Agostinis C., Bossi F., Rizzi L., Debeus A., Tripodo C., Radillo O., de Seta F., Ghebrehiwet B., Tedesco F. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol. Immunol., 2008, Vol. 45, no. 9, pp. 2629-2640.
13. Bulmer J.N., Morrison L., Longfellow M., Ritson A., Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum. Reprod., 1991, Vol. 6, no. 6, pp. 791-798.
14. Cai J., Ahmad S., Jiang W.G., Huang J., Kontos C.D., Boulton M., Ahmed A. Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes, 2003, Vol. 52, no. 12, pp. 2959-2968.
15. Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, Vol. 473, no. 7347, pp. 298-307.
16. Cartwright J.E., Fraser R., Leslie R., Wallace A.E., James J.L. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction, 2010, Vol. 140, pp. 803-813.
17. Cerdeira A.S., Karumanchi S.A. Angiogenic factors in preeclampsia and related disorders. Cold Spring Harb. Perspect. Med., 2012, Vol. 2, no. 11, pii: a006585. doi: 10.1101/cshperspect.a006585.
18. Cerdeira A.S., Rajakumar A., Royle C.M., Lo A., Husain Z., Thadhani R.I., Sukhatme V.P., Karumanchi S.A., Kopcow H.D. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J. Immunol., 2013, Vol. 190, no. 8, pp. 3939-3948.
19. Chazara O., Xiong S., Moffett A. Maternal KIR and fetal HLA-C: a fine balance. J. Leukoc. Biol., 2011, Vol. 90, no. 4, pp. 703-716.
20. Chen W.S., Kitson R.P., Goldfarb R.H. Modulation of human NK cell lines by vascular endothelial growth factor and receptor VEGFR-1 (FLT-1). In vivo, 2002, Vol. 16, no. 6, pp. 439-445.
21. Choudhury R.H., Dunk C.E., Lye S.J., Aplin J.D., Harris L.K., Jones R.L. Extravillous trophoblast and endothelial cell crosstalk mediates leukocyte infiltration to the early remodeling decidual spiral arteriole wall. J. Immunol., 2017, Vol. 198, no. 10, pp. 4115-4128.
22. Cooper M.A., Fehniger T.A., Caligiuri M.A. The biology of human natural killer-cell subsets. Trends Immunol., 2001, Vol. 22, no. 11, pp. 633-640.
23. Curigliano G., Criscitiello C., Gelao L., Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G). Clin. Cancer Res., 2013, Vol. 19, no. 20, pp. 5564-5571.
24. Demir R., Seval Y., Huppertz B. Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem., 2007, Vol. 109, no. 4, pp. 257-265.
25. Distler J.H., Hirth A., Kurowska-Stolarska M., Gay R.E., Gay S., Distler O. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q. J. Nucl. Med., 2003, Vol. 47, no. 3, pp. 149-161.
26. Dunk C., Ahmed A. Expression of VEGF-C and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast. Histol. Histopathol., 2001, Vol. 16, no. 2, pp. 359-375.
27. Edgell C.J., McDonald C.C., Graham J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA, 1983, Vol. 80, no. 12, pp. 3734-3737.
28. el Costa H., Tabiasco J., Berrebi A., Parant O., Aguerre-Girr M., Piccinni M.P., le Bouteiller P. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J. Reprod. Immunol., 2009, Vol. 82, no. 2, pp. 142-147.
29. Eroglu A., Ersoz C., Karasoy D., Sak S. Vascular endothelial growth factor (VEGF)-C, VEGF-D, VEGFR-3 and D2-40 expressions in primary breast cancer: Association with lymph node metastasis. Adv. Clin. Exp. Med., 2017, Vol. 26, no. 2, pp. 245-249.
30. Fons P., Chabot S., Cartwright J.E., Lenfant F., L’Faqihi F., Giustiniani J., Herault J.P., Gueguen G., Bono F., Savi P., Aguerre-Girr M., Fournel S., Malecaze F., Bensussan A., Plouet J., le Bouteiller P. Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood, 2006, Vol. 108, no. 8, pp. 2608-2615.
31. Fraser R., Whitley G.S., Thilaganathan B., Cartwright J.E. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J. Reprod. Immunol., 2015, Vol. 110, pp. 54-60.
32. Gong J.H., Maki G., Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia, 1994, Vol. 8, no. 4, pp. 652-658.
33. Grant D.S., Kinsella J.L., Kibbey M.C., LaFlamme S., Burbelo P.D., Goldstein A.L., Kleinman H.K. Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J. Cell Sci., 1995, Vol. 108, Pt 12, pp. 3685-3694.
34. Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., CohenDaniel L., Arnon T.I., Manaster I., Gazit R., Yutkin V., Benharroch D., Porgador A., Keshet E., Yagel S., Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med., 2006, Vol. 12, no. 9, pp. 1065-1074.
35. Harris L.K. Review: Trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta, 2010, Vol. 31, pp. S93-98.
36. Harris L.K., Jones C.J., Aplin J.D. Adhesion molecules in human trophoblast – a review. II. extravillous trophoblast. Placenta, 2009, Vol. 30, no. 4, pp. 299-304.
37. Highet A.R., Buckberry S., Mayne B.T., Khoda S.M., Bianco-Miotto T., Roberts C.T. First trimester trophoblasts forming endothelial-like tubes in vitroemulate a ‘blood vessel development’ gene expression profile. Gene Expr. Patterns, 2016, Vol. 21, no. 2, pp. 103-110.
38. Jingting C., Yangde Z., Yi Z., Huining L., Rong Y., Yu Z. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol. Oncol., 2007, Vol. 107, no. 1, pp. 22-29.
39. Kalkunte S., Lai Z., Tewari N., Chichester C., Romero R., Padbury J., Sharma S. In vitroand in vivoevidence for lack of endovascular remodeling by third trimester trophoblasts. Placenta, 2008, Vol. 29, no. 10, pp. 871-878.
40. Kanar M.C., Thiele D.L., Ostensen M., Lipsky P.E. Regulation of human natural killer (NK) cell function: induction of killing of an NK-resistant renal carcinoma cell line. J. Clin. Immunol., 1988, Vol. 8, no. 1, pp. 69-79.
41. Karmakar S., Dhar R., Das C. Inhibition of cytotrophoblastic (JEG-3) cell invasion by interleukin 12 involves an interferon gamma-mediated pathway. J. Biol. Chem., 2004, Vol. 279, no. 53, pp. 55297-55307.
42. Kaufmann P., Mayhew T.M., Charnock-Jones D.S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta, 2004, Vol. 25, no. 2-3, pp. 114-126.
43. Kim M., Park H.J., Seol J.W., Jang J.Y., Cho Y.S., Kim K.R., Choi Y., Lydon J.P., Demayo F.J., Shibuya M., Ferrara N., Sung H.K., Nagy A., Alitalo K., Koh G.Y. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol. Med., 2013, Vol. 5, no. 9, pp. 1415-1430.
44. Kohler P.O., Bridson W.E. Isolation of hormone-producing clonal lines of human choriocarcinoma. J. Clin. Endocrinol. Metab., 1971, Vol. 32, no. 5, pp. 683-687.
45. Komai T., Okamura T., Yamamoto K., Fujio K. The effects of TGF-betas on immune responses.Nihon Rinsho Meneki Gakkai Kaishi, 2016, Vol. 39, no. 1, pp. 51-58.
46. Komatsu F., Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol. Res., 1998, Vol. 10, no. 10, pp. 483-489.
47. Koopman L.A., Kopcow H.D., Rybalov B., Boyson J.E., Orange J.S., Schatz F., Masch R., Lockwood C.J., Schachter A.D., Park P.J., Strominger J.L. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med., 2003, Vol. 198, no. 8, pp. 1201-1212.
48. Kurtoglu E., Altunkaynak B.Z., Aydin I., Ozdemir A.Z., Altun G., Kokcu A., Kaplan S. Role of vascular endothelial growth factor and placental growth factor expression on placenta structure in pre-eclamptic pregnancy. J. Obstet. Gynaecol. Res., 2015, Vol. 41, no. 10, pp. 1533-1540.
49. Lash G.E., Otun H.A., Innes B.A., Percival K., Searle R.F., Robson S.C., Bulmer J.N. Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Hum. Reprod., 2010, Vol. 25, no. 5, pp. 1137-1145.
50. Lash G.E., Schiessl B., Kirkley M., Innes B.A., Cooper A., Searle R.F., Robson S.C., Bulmer J.N. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J. Leukoc. Biol., 2006, Vol. 80, no. 3, pp. 572-580.
51. LaValley D.J., Zanotelli M.R., Bordeleau F., Wang W., Schwager S.C., Reinhart-King C.A. Matrix stiffness enhances VEGFR-2 internalization, signaling, and proliferation in endothelial cells. Converg. Sci. Phys. Oncol., 2017, Vol. 3. doi: 10.1088/2057-1739/aa9263.
52. le Bouteiller P., Fons P., Herault J.P., Bono F., Chabot S., Cartwright J.E., Bensussan A. Soluble HLA-G and control of angiogenesis. J. Reprod. Immunol., 2007, Vol. 76, no. 1-2, pp. 17-22.
53. le Bouteiller P., Pizzato N., Barakonyi A., Solier C. HLA-G, pre-eclampsia, immunity and vascular events. J. Reprod. Immunol., 2003, Vol. 59, no. 2, pp. 219-234.
54. Lvova T.Y., Stepanova O.I., Furaeva K.N., Korenkov D.A., Sokolov D.I., Selkov S.A. Effects of placental tissue secretory products on the formation of vascular tubules by EA.Hy926 endothelial cells. Bull. Exp. Biol. Med., 2013, Vol. 155, no. 1, pp. 108-112.
55. Lyall F. Priming and remodelling of human placental bed spiral arteries during pregnancy – a review. Placenta, 2005, Vol. 26, Suppl. A, pp. S31-6.
56. Lyons J.M., 3 rd , Schwimer J.E., Anthony C.T., Thomson J.L., Cundiff J.D., Casey D.T., Maccini C., Kucera P., Wang Y.Z., Boudreaux J.P., Woltering E.A. The role of VEGF pathways in human physiologic and pathologic angiogenesis. J. Surg. Res., 2010, Vol. 159, no. 1, pp. 517-527.
57. Male V., Sharkey A., Masters L., Kennedy P.R., Farrell L.E., Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol., 2011, Vol. 41, no. 10, pp. 3017-3027.
58. Manaster I., Gazit R., Goldman-Wohl D., Stern-Ginossar N., Mizrahi S., Yagel S., Mandelboim O. Notch activation enhances IFNgamma secretion by human peripheral blood and decidual NK cells. J. Reprod. Immunol., 2010, Vol. 84, no. 1, pp. 1-7.
59. Martinez-Lostao L., de Miguel D., Al-Wasaby S., Gallego-Lleyda A., Anel A. Death ligands and granulysin: mechanisms of tumor cell death induction and therapeutic opportunities. Immunotherapy, 2015, Vol. 7, no. 8, pp. 883-882.
60. Matsunami K., Miyagawa S., Nakai R., Yamada M., Shirakura R. Protection against natural killer-mediated swine endothelial cell lysis by HLA-G and HLA-E. Transplant. Proc., 2000, Vol. 32, no. 5, pp. 939-940.
61. Mikhailova V.A., Belyakova K.L., Selkov S.A., Sokolov D.I. Peculiarities of NK cells differentiation: CD56dim and CD56 bright NK cells at pregnancy and in non-pregnant state. Medical Immunology (Russia), 2017, Vol. 19, no. 1, pp. 19-26. doi: 10.15789/1563-0625-2017-1-19-26.
62. Mousseau Y., Mollard S., Qiu H., Richard L., Cazal R., Nizou A., Vedrenne N., Remi S., Baaj Y., Fourcade L., Funalot B., Sturtz F.G. In vitro3D angiogenesis assay in egg white matrix: comparison to Matrigel, compatibility to various species, and suitability for drug testing. Lab. Invest., 2014, Vol. 94, no. 3, pp. 340-349.
63. Murphy S.P., Tayade C., Ashkar A.A., Hatta K., Zhang J., Croy B.A. Interferon gamma in successful pregnancies. Biol. Reprod., 2009, Vol. 80, no. 5, pp. 848-859.
64. Naruse K., Lash G.E., Bulmer J.N., Innes B.A., Otun H.A., Searle R.F., Robson S.C. The urokinase plasminogen activator (uPA) system in uterine natural killer cells in the placental bed during early pregnancy.Placenta, 2009, Vol. 30, no. 5, pp. 398-404.
65. Ni J., Cerwenka A. STAT5 loss awakens the dark force in natural killer cells. Cancer Discov., 2016, Vol. 6, no. 4, pp. 347-349.
66. Okada H., Nakajima T., Sanezumi M., Ikuta A., Yasuda K., Kanzaki H. Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro. J. Clin. Endocrinol. Metab., 2000, Vol. 85, no. 12, pp. 4765-4570.
67. Park K., Amano H., Ito Y., Kashiwagi S., Yamazaki Y., Takeda A., Shibuya M., Kitasato H., Majima M. Vascular endothelial growth factor receptor-1 (VEGFR-1) signaling enhances angiogenesis in a surgical sponge model. Biomed. Pharmacother., 2016, Vol. 78, pp. 140-149.
68. Pijnenborg R. The origin and future of placental bed research. Eur. J. Obstet Gynecol. Reprod. Biol., 1998, Vol. 81, no. 2, pp. 185-90.
69. Ponce M.L. Tube formation: an in vitromatrigel angiogenesis assay. Methods Mol. Biol., 2009, Vol. 467, pp. 183-188.
70. Principe D.R., Doll J.A., Bauer J., Jung B., Munshi H.G., Bartholin L., Pasche B., Lee C., Grippo P.J. TGFbeta: duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst., 2014, Vol. 106, no. 2, djt369. doi: 10.1093/jnci/djt369.
71. Rebmann V., Regel J., Stolke D., Grosse-Wilde H. Secretion of sHLA-G molecules in malignancies. Semin. Cancer Biol., 2003, Vol. 13, no. 5, pp. 371-377.
72. Risau W. Mechanisms of angiogenesis. Nature, 1997, Vol. 386, pp. 671-674.
73. Robson A., Harris L.K., Innes B.A., Lash G.E., Aljunaidy M.M., Aplin J.D., Baker P.N., Robson S.C., Bulmer J.N. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J., 2012, Vol. 26, no. 12, pp. 4876-4885.
74. Rosario G.X., Konno T., Soares M.J. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev. Biol., 2008, Vol. 314, no. 2, pp. 362-375.
75. Singh M., Kindelberger D., Nagymanyoki Z., Ng S.W., Quick C.M., Yamamoto H., Fichorova R., Fulop V., Berkowitz R.S. Vascular endothelial growth factors and their receptors and regulators in gestational trophoblastic diseases and normal placenta. J. Reprod. Med., 2012, Vol. 57, no. 5-6, pp. 197-203.
76. Sokolov D.I., Lvova T.Y., Okorokova L.S., Belyakova K.L., Sheveleva A.R., Stepanova O.I., Mikhailova V.A., Selkov S.A. Effect of cytokines on the formation tube-like structures by endothelial cells in the presence of trophoblast cells.Bull. Exp. Biol. Med., 2017, Vol. 163, no. 1, pp. 148-158.
77. Trew A.J., Lash G.E., Baker P.N. Investigation of an in vitromodel of trophoblast invasion. Early Pregnancy, 2000, Vol. 4, no. 3, pp. 176-190.
78. Tsukihara S., Harada T., Deura I., Mitsunari M., Yoshida S., Iwabe T., Terakawa N. Interleukin-1beta-induced expression of IL-6 and production of human chorionic gonadotropin in human trophoblast cells via nuclear factorkappaB activation. Am. J. Reprod. Immunol., 2004, Vol. 52, no. 3, pp. 218-223.
79. Tsunematsu H., Tatsumi T., Kohga K., Yamamoto M., Aketa H., Miyagi T., Hosui A., Hiramatsu N., Kanto T., Hayashi N., Takehara T. Fibroblast growth factor-2 enhances NK sensitivity of hepatocellular carcinoma cells. Int. J. Cancer, 2012, Vol. 130, no. 2, pp. 356-364.
80. Vacca P., Moretta L., Moretta A., Mingari M.C. Origin, phenotype and function of human natural killer cells in pregnancy. Trends Immunol., 2011, Vol. 32, no. 11, pp. 517-523.
81. van den Heuvel M.J., Chantakru S., Xuemei X., Evans S.S., Tekpetey F., Mote P.A., Clarke C.L., Croy B.A. Trafficking of circulating pro-NK cells to the decidualizing uterus: regulatory mechanisms in the mouse and human. Immunol. Invest., 2005, Vol. 34, no. 3, pp. 273-293.
82. Wada Y., Ozaki H., Abe N., Mori A., Sakamoto K., Nagamitsu T., Nakahara T., Ishii K. Role of vascular endothelial growth factor in maintenance of pregnancy in mice. Endocrinology, 2013, Vol. 154, no. 2, pp. 900-910.
83. Wallace A.E., Fraser R., Cartwright J.E. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum. Reprod. Update, 2012, Vol. 18, no. 4, pp. 458-471.
84. Wang S.S., Han J.Y., Wu X.W., Cao R.H., Qi H.G., Xia Z.X., Chen D., Gong F.L.,Chen S. A study of HLA-G1 protection of porcine endothelial cells against human NK cell cytotoxicity. Transplant. Proc., 2004, Vol. 36, no. 8, pp. 2473-2474.
85. Wang Y., Xu B., Li M.Q., Li D.J., Jin L.P. IL-22 secreted by decidual stromal cells and NK cells promotes the survival of human trophoblasts. Int. J. Clin. Exp. Pathol., 2013, Vol. 6, no. 9, pp. 1781-1790.
86. Wheeler K.C., Jena M.K., Pradhan B.S., Nayak N., Das S., Hsu C.D., Wheeler D.S., Chen K., Nayak N.R. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS ONE, 2018, Vol. 13, no. 1, e0191040. doi:10.1371/journal.pone.0191040.
87. Whitley G.S., Cartwright J.E. Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta, 2010, Vol. 31, no. 6, pp. 465-474.
88. Yagel S. The developmental role of natural killer cells at the fetal-maternal interface. Am. J. Obstet. Gynecol., 2009, Vol. 201, no. 4, pp. 344-350.
89. Zeng M.H., Fang C.Y., Wang S.S., Zhu M., Xie L., Li R., Wang L., Wu X.W., Chen S. A study of soluble HLA-G1 protecting porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Transplant. Proc., 2006, Vol. 38, no. 10, pp. 3312-3314.
90. Zhou Y., Bellingard V., Feng K.T., McMaster M., Fisher S.J. Human cytotrophoblasts promote endothelial survival and vascular remodeling through secretion of Ang2, PlGF, and VEGF-C. Dev. Biol., 2003, Vol. 263, no. 1, pp. 114-125.
Review
For citations:
Markova K.L., Stepanova O.I., Sheveleva A.R., Kostin N.A., Mikhailova V.A., Selkov S.A., Sokolov D.I. NATURAL KILLER CELL EFFECTS UPON ANGIOGENESIS UNDER CONDITIONS OF CONTACT-DEPENDENT AND DISTANT CO-CULTURING WITH ENDOTHELIAL AND TROPHOBLAST CELLS. Medical Immunology (Russia). 2019;21(3):427-440. https://doi.org/10.15789/1563-0625-2019-3-427-440