Preview

Медицинская иммунология

Расширенный поиск

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ АГОНИСТОВ И АНТАГОНИСТОВ Toll-ПОДОБНЫХ РЕЦЕПТОРОВ ДЛЯ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ВИРУСНЫХ ИНФЕКЦИЙ

https://doi.org/10.15789/1563-0625-2019-3-397-406

Полный текст:

Аннотация

Разработчики антивирусных препаратов обычно фокусируются непосредственно на вирусах как основных объектах для исследований. Однако клеточные компоненты, участвующие в жизненном цикле вирусов или иммунном ответе на вирусные инфекции, становятся все более привлекательными мишенями, что открывает новые возможности для противовирусной терапии. Toll-подобные рецепторы (TLR) играют важную роль в активации как врожденного, так и адаптивного иммунного ответа, в том числе на вирусные инфекции респираторного тракта. В данном обзоре мы рассмотрим TLR как мишень для разработки новых противовирусных препаратов, рассмотрим механизм запуска противовирусного ответа, посредством индукции интерферонов I типа, а также механизмы ухода вирусов от иммунного ответа. Также рассмотрим существующие соединения – агонисты и антагонисты TLR – и обсудим вопросы безопасности их применения.

Об авторах

А. А. Никонова
ФГБУ «Государственный научный центр „Институт иммунологии“» Федерального медико-биологического агентства России; ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова»
Россия

научный сотрудник;

к.б.н., заведующая лабораторией молекулярной биотехнологии (115088 Москва, ул. 1-ая Дубровская, 15; тел.: 8 (495) 674-08-43).



М. Р. Хаитов
ФГБУ «Государственный научный центр „Институт иммунологии“» Федерального медико-биологического агентства России
Россия

д.м.н., профессор, член-корр. РАН, директор

г. Москва



Р. М. Хаитов
ФГБУ «Государственный научный центр „Институт иммунологии“» Федерального медико-биологического агентства России
Россия

д.м.н., профессор, академик РАН, научный руководитель

г. Москва



Список литературы

1. Царев С.В., Хаитов М.Р. Роль респираторных вирусов при бронхиальной астме // РМЖ, 2009. № 2. С. 136-139.

2. Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. Recognition of double-stranded Rna and activation of Nf-KappaBby Toll-like receptor 3. Nature, 2001, Vol. 413, no. 6857, pp. 732-738.

3. Appledorn D.M., Patial S., McBride A., Godbehere S., van Rooijen N., Parameswaran N., Amalfitano A. Adenovirus vector-induced innate inflammatory mediators, Mapk signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J. Immunol., 2008, Vol. 181, no. 3, pp. 2134-2144.

4. Avalos A.M., Busconi L., Marshak-Rothstein A. Regulation of autoreactive B Cell responses to endogenous TLR ligands. Autoimmunity, 2010, Vol. 43, no. 1, pp. 76-83.

5. Babu S., Blauvelt C. P., Kumaraswami V., Nutman T.B. Cutting edge: diminished T cell TLR expression and function modulates the immune response in human filarial infection. J. Immunol., 2006, Vol. 176, no. 7, pp. 3885- 3389.

6. Bagaev A., Pichugin A., Nelson E. L., Agadjanyan M.G., Ghochikyan A., Ataullakhanov R.I. Anticancer mechanisms in two murine bone marrow-derived dendritic cell subsets activated with TLR4 agonists. J. Immunol., 2018, Vol. 200, no. 8, pp. 2656-2669.

7. Banchereau J., Steinman R.M. Dendritic cells and the control of immunity. Nature, 1998, Vol. 392, no. 6673, pp. 245-252.

8. Barton G.M., Kagan J.C., Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol., 2006, Vol. 7, no. 1, pp. 49-56.

9. Bekeredjian-Ding I.B., Wagner M., Hornung V., Giese T., Schnurr M., Endres S., Hartmann G. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cellsviaType I IFN. J. Immunol., 2005, Vol. 174, no. 7, pp. 4043-4050.

10. Benne C.A., Kraaijeveld C.A., van Strijp J.A., Brouwer E., Harmsen M., Verhoef J., van Golde L.M., van Iwaarden J.F. Interactions of surfactant protein a with Influenza a viruses: binding and neutralization. J. Infect. Dis., 1995, Vol. 171, no. 2, pp. 335-341.

11. Beutler B.A. TLRs and innate immunity. Blood, 2009, Vol. 113, no. 7, pp. 1399-1407.

12. Bieback K., Lien E., Klagge I.M., Avota E., Schneider-Schaulies J., Duprex W.P., Wagner H., Kirschning C.J., Ter Meulen V., Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol., 2002, Vol. 76, no. 17, pp. 8729-8736.

13. Carmody R.J., Maguschak K., Chen Y.H. A novel mechanism of nuclear factor-KappaBregulation by adenoviral protein 14. 7k. Immunology, 2006, Vol. 117, no. 2, pp. 188-195.

14. Carty M., Goodbody R., Schroder M., Stack J., Moynagh P.N., Bowie A.G. The human adaptor Sarm negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol., 2006, Vol. 7, no. 10, pp. 1074-1081.

15. Chang Y.C., Madkan V., Cook-Norris R., Sra K., Tyring S. Current and potential uses of Imiquimod. South. Med. J., 2005, Vol. 98, no. 9, pp. 914-920.

16. Childs K., Stock N., Ross C., Andrejeva J., Hilton L., Skinner M., Randall R., Goodbourn S. MDA-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology, 2007, Vol. 359, no. 1, pp. 190-200.

17. Delaloye J., Roger T., Steiner-Tardivel Q.G., le Roy D., Knaup Reymond M., Akira S., Petrilli V., Gomez C.E., Perdiguero B., Tschopp J., Pantaleo G., Esteban M., Calandra T. Innate immune sensing of modified vaccinia virus Ankara (Mva) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog., 2009, Vol. 5, no. 6, e1000480. doi:10.1371/journal.ppat.1000480.

18. Deng G.M., Nilsson I.M., Verdrengh M., Collins L.V., Tarkowski A. Intra-articularly localized bacterial DNA containing CpGmotifs induces arthritis. Nat. Med., 1999, Vol. 5, no. 6, pp. 702-705.

19. Diebold S.S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C. Innate antiviral responses by means of Tlr7-mediated recognition of single-stranded Rna. Science, 2004, Vol. 303, no. 5663, pp. 1529-1531.

20. Dowling J.K., Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin. Transl. Immunology, 2016, Vol. 5, no. 5, e85. doi:10.1038/cti.2016.22.

21. Droemann D., Albrecht D., Gerdes J., Ulmer A.J., Branscheid D., Vollmer E., Dalhoff K., Zabel P., Goldmann T. Human lung cancer cells express functionally active Toll-like receptor 9. Respir. Res., 2005, Vol. 6, p. 1.

22. Evans S.E., Xu Y., Tuvim M.J., Dickey B.F. Inducible innate resistance of lung epithelium to infection. Annu. Rev. Physiol., 2010, Vol. 72, pp. 413-435.

23. Fernandez-Sesma A., Marukian S., Ebersole B.J., Kaminski D., Park M.S., Yuen T., Sealfon S.C., Garcia-Sastre A., Moran T.M. Influenza virus evades innate and adaptive immunity viathe NS1 protein. J. Virol., 2006, Vol. 80, no. 13, pp. 6295-6304.

24. Fernandez S., Jose P., Avdiushko M.G., Kaplan A.M., Cohen D.A. Inhibition of Il-10 receptor function in alveolar macrophages by Toll-like receptor agonists. J. Immunol., 2004, Vol. 172, no. 4, pp. 2613-2620.

25. Forward N.A., Furlong S.J., Yang Y., Lin T.J., Hoskin D.W. Signaling through TLR7 enhances the immunosuppressive activity of murine CD4 + CD25+ T regulatory cells. J. Leukoc. Biol., 2010, Vol. 87, no. 1, pp. 117- 125.

26. Fowell A.J., Nash K.L. Telaprevir: a new hope in the treatment of chronic hepatitis C? Adv. Ther., 2010, Vol. 27, no. 8, pp. 512-522.

27. Gay N.J., Gangloff M. Structure of Toll-Like receptors. Handb. Exp. Pharmacol., 2008, no. 183, pp. 181-200.

28. Gilliet M., Cao W., Liu Y.J. Plasmacytoid dendritic dells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol., 2008, Vol. 8, no. 8, pp. 594-606.

29. Gregoire C., Chasson L., Luci C., Tomasello E., Geissmann F., Vivier E., Walzer T. The trafficking of natural killer cells. Immunol. Rev., 2007, Vol. 220, pp. 169-182.

30. Guillot L., Medjane S., Le-Barillec K., Balloy V., Danel C., Chignard M., Si-Tahar M. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem., 2004, Vol. 279, no. 4, pp. 2712-2718.

31. Gunzer M., Riemann H., Basoglu Y., Hillmer A., Weishaupt C., Balkow S., Benninghoff B., Ernst B., Steinert M., Scholzen T., Sunderkotter C., Grabbe S. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood, 2005, Vol. 106, no. 7, pp. 2424-2432.

32. Hammond T., Lee S., Watson M. W., Flexman J. P., Cheng W., Fernandez S., Price P. Toll-like receptor (TLR) expression on CD4 + and CD8 + T-cells in patients chronically infected with hepatitis C virus. Cell Immunol., 2010, Vol. 264, no. 2, pp. 150-155.

33. Hoffmann J.A., Reichhart J.M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol., 2002, Vol. 3, no. 2, pp. 121-126.

34. Holt P.G., Strickland D.H., Wikstrom M.E., Jahnsen F.L. Regulation of immunological homeostasis in the respiratory tract. Nat. Rev. Immunol., 2008, Vol. 8, no. 2, pp. 142-152.

35. Horscroft N.J., Pryde D.C., Bright H. Antiviral applications of Toll-like receptor agonists. J. Antimicrob. Chemother., 2012, Vol. 67, no. 4, pp. 789-801.

36. Huleatt J.W., Nakaar V., Desai P., Huang Y., Hewitt D., Jacobs A., Tang J., McDonald W., Song L., Evans R.K., Umlauf S., Tussey L., Powell T.J. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 2008, Vol. 26, no. 2, pp. 201-214.

37. Iwami K.I., Matsuguchi T., Masuda A., Kikuchi T., Musikacharoen T., Yoshikai Y. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J. Immunol., 2000, Vol. 165, no. 12, pp. 6682-6686.

38. Jasani B., Navabi H., Adams M. Ampligen: a potential Toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine, 2009, Vol. 27, no. 25-26, pp. 3401-3404.

39. Jegerlehner A., Maurer P., Bessa J., Hinton H.J., Kopf M., Bachmann M.F. TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol., 2007, Vol. 178, no. 4, pp. 2415-2420.

40. Johnson C.L., Owen D.M., Gale M.Jr. Functional and therapeutic analysis of hepatitis C virus NS3.4A protease control of antiviral immune defense. J. Biol. Chem., 2007, Vol. 282, no. 14, pp. 10792-10803.

41. Joo C.H., Shin Y.C., Gack M., Wu L., Levy D., Jung J.U. Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi’s Sarcoma-associated Herpesvirus viral IRFhomolog VIRF3. J. Virol., 2007, Vol. 81, no. 15, pp. 8282-8292.

42. Juarez E., Nunez C., Sada E., Ellner J.J., Schwander S.K., Torres M. Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir. Res., 2010, Vol. 11, p. 2.

43. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol., 2014, Vol. 5, p. 461.

44. Kemeny L., Nagy N. New perspective in immunotherapy: Local imiquimod treatment. Orv. Hetil., 2010, Vol. 151, no. 19, pp. 774-783.

45. Kurt-Jones E.A., Chan M., Zhou S., Wang J., Reed G., Bronson R., Arnold M.M., Knipe D.M., Finberg R.W. Herpes Simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA, 2004, Vol. 101, no. 5, pp. 1315-1320.

46. Kurt-Jones E.A., Popova L., Kwinn L., Haynes L.M., Jones L.P., Tripp R.A., Walsh E.E., Freeman M.W., Golenbock D.T., Anderson L.J., Finberg R.W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol., 2000, Vol. 1, no. 5, pp. 398-401.

47. LeBouder E., Rey-Nores J.E., Rushmere N.K., Grigorov M., Lawn S.D., Affolter M., Griffin G.E., Ferrara P., Schiffrin E.J., Morgan B.P., Labeta M.O. Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J. Immunol., 2003, Vol. 171, no. 12, pp. 6680-6689.

48. Lewis D.E., Gilbert B.E., Knight V. Influenza virus infection induces functional alterations in peripheral blood lymphocytes. J. Immunol., 1986, Vol. 137, no. 12, pp. 3777-3781.

49. Li Y., Xiang M., Yuan Y., Xiao G., Zhang J., Jiang Y., Vodovotz Y., Billiar T.R., Wilson M.A., Fan J. Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, Vol. 297, no. 6, pp. R1670-1680.

50. Liu G., Zhang L., Zhao Y. Modulation of immune responses through direct activation of Toll-like receptors to T cells.Clin. Exp. Immunol., 2010, Vol. 160, no. 2, pp. 168-175.

51. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes Simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med., 2003, Vol. 198, no. 3, pp. 513-520.

52. Madhi S.A., Klugman K.P. A role for Streptococcus Pneumoniaein virus-associated pneumonia. Nat. Med., 2004, Vol. 10, no. 8, pp. 811-813.

53. Mayer A.K., Muehmer M., Mages J., Gueinzius K., Hess C., Heeg K., Bals R., Lang R., Dalpke A.H. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J. Immunol., 2007, Vol. 178, no. 5, pp. 3134-3142.

54. Martyushev-Poklad A., Bruhwyler J., Heijmans S., Thiry M. Efficacy of a novel antibody TLR3 modulator in the self-treatment of common cold: the Estuar trial. Adv. Infect. Dis., 2015, Vol. 5, pp. 204-217.

55. McGettrick A.F., O’Neill L.A. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr. Opin. Immunol., 2010, Vol. 22, no. 1, pp. 20-27.

56. Mosca F., Tritto E., Muzzi A., Monaci E., Bagnoli F., Iavarone C., O’Hagan D., Rappuoli R., de Gregorio E. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl. Acad. Sci. USA., 2008, Vol. 105, no. 30, pp. 10501-10506.

57. Muir A., Soong G., Sokol S., Reddy B., Gomez M.I., van Heeckeren A., Prince A. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell. Mol. Biol., 2004, Vol. 30, no. 6, pp. 777-783.

58. O’Mahony D.S., Pham U., Iyer R., Hawn T.R., Liles W.C. Differential constitutive and cytokine-modulated expression of human Toll-like receptors in primary neutrophils, monocytes, and macrophages. Int. J. Med. Sci., 2008, Vol. 5, no. 1, pp. 1-8.

59. O’Neill L.A., Bowie A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol., 2007, Vol. 7, no. 5, pp. 353-364.

60. Oliveira-Nascimento L., Massari P., Wetzler L.M. The role of TLR2 in infection and immunity. Front. Immunol., 2012, Vol. 3, p. 79.

61. Palomares O., Yaman G., Azkur A.K., Akkoc T., Akdis M., Akdis C.A. Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol., 2010, Vol. 40, no. 5, pp. 1232-1240.

62. Panter G., Kuznik A., Jerala R. Therapeutic applications of nucleic acids as ligands for Toll-like receptors. Curr. Opin. Mol. Ther., 2009, Vol. 11, no. 2, pp. 133-145.

63. Patole P.S., Grone H.J., Segerer S., Ciubar R., Belemezova E., Henger A., Kretzler M., Schlondorff D., Anders H.J. Viral double-stranded RNAaggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells. J. Am. Soc. Nephrol., 2005, Vol. 16, no. 5, pp. 1326-1338.

64. Pegu A., Qin S., Fallert Junecko B.A., Nisato R.E., Pepper M.S., Reinhart T.A. Human lymphatic endothelial cells express multiple functional TLRs. J. Immunol., 2008, Vol. 180, no. 5, pp. 3399-3405.

65. Pesce I., Monaci E., Muzzi A., Tritto E., Tavarini S., Nuti S., de Gregorio E., Wack A. Intranasal administration of CpGinduces a rapid and transient cytokine response followed by dendritic and natural killer cell activation and recruitment in the mouse lung. J. Innate Immun., 2010, Vol. 2, no. 2, pp. 144-159.

66. Phipps S., Lam C.E., Mahalingam S., Newhouse M., Ramirez R., Rosenberg H.F., Foster P.S., Matthaei K.I. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood, 2007, Vol. 110, no. 5, 1578-1586.

67. Sato A., Linehan M.M., Iwasaki A. Dual recognition of Herpes Simplex viruses by TLR2 and TLR9 in dendritic cells. Proc. Natl. Acad. Sci. USA, 2006, Vol. 103, no. 46, pp. 17343-17348.

68. Soong G., Reddy B., Sokol S., Adamo R., Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest., 2004, Vol. 113, no. 10, pp. 1482-1489.

69. Sorensen L.N., Reinert L.S., Malmgaard L., Bartholdy C., Thomsen A.R., Paludan S.R. TLR2 and TLR9 synergistically control Herpes Simplex virus infection in the brain. J. Immunol., 2008, Vol. 181, no. 12, pp. 8604-8612.

70. Suntharalingam G., Perry M. R., Ward S., Brett S. J., Castello-Cortes A., Brunner M. D., Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med., 2006, Vol. 355, no. 10, pp. 1018-10128.

71. Sutmuller R.P., den Brok M.H., Kramer M., Bennink E.J., Toonen L.W., Kullberg B.J., Joosten L.A., Akira S., Netea M.G., Adema G.J. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest., 2006, Vol. 116, no. 2, pp. 485-494.

72. Takenaka H., Ushio H., Niyonsaba F., Jayawardana S.T., Hajime S., Ikeda S., Ogawa H., Okumura K. Synergistic augmentation of inflammatory cytokine productions from murine mast cells by monomeric IgEand Toll-like receptor ligands. Biochem. Biophys. Res. Commun., 2010, Vol. 391, no. 1, pp. 471-476.

73. Traub S., Johnston S.L. TLRs and viral infection in the lung. Toll-like receptors in diseases of the lung. Ed. Greene C.M., Bentham Science Publishers, 2012, pp. 116-132.

74. Tsitoura D., Ambery C., Price M., Powley W., Garthside S., Biggadike K., Quint D. Early clinical evaluation of the intranasal TLR7 agonist GSK2245035: use of translational biomarkers to guide dosing and confirm target engagement. Clin. Pharmacol. Ther., 2015, Vol. 98, no. 4, pp. 369-380.

75. Vollmer J. TLR9 in health and disease. Int. Rev. Immunol., 2006, Vol. 25, no. 3-4, pp. 155-181.

76. Wan Y.Y. Multi-tasking of helper T cells. Immunology, 2010, Vol. 130, no. 2, pp. 166-171.

77. Wang D., Bhagat L., Yu D., Zhu F.G., Tang J.X., Kandimalla E.R., Agrawal S. Oligodeoxyribonucleotidebased antagonists for Toll-like receptors 7 and 9. J. Med. Chem., 2009, Vol. 52, no. 2, pp. 551-558.

78. Welsh R.M., Che J.W., Brehm M.A., Selin L.K. Heterologous immunity between viruses. Immunol. Rev., 2010, Vol. 235, no. 1, pp. 244-266.

79. Wissinger E., Goulding J., Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin. Immunol., 2009, Vol. 21, no. 3, pp. 147-155.

80. Woodhour A.F., Friedman A., Tytell A.A., Hilleman M.R. Hyperpotentiation by synthetic double-stranded RNAof antibody responses to influenza virus vaccine in adjuvant 65. Proc. Soc. Exp. Biol. Med., 1969, Vol. 131, no. 3, pp. 809-817.

81. Xiang A.X., Webber S.E., Kerr B.M., Rueden E.J., Lennox J.R., Haley G.J., Wang T., Ng J.S., Herbert M.R., Clark D.L., Banh V.N., Li W., Fletcher S.P., Steffy K.R., Bartkowski D.M., Kirkovsky L.I., Bauman L.A., Averett D.R. Discovery of ANA975: an oral prodrug of the TLR-7 agonist isatoribine. Nucleosides Nucleotides Nucleic Acids, 2007, Vol. 26, no. 6-7, pp. 635-640.

82. Zhu Q., Egelston C., Gagnon S., Sui Y., Belyakov I.M., Klinman D.M., Berzofsky J.A. Using 3 TLR ligands as a combination adjuvant induces qualitative changes in T cell responses needed for antiviral protection in mice. J. Clin. Invest., 2010, Vol. 120, no. 2, pp. 607-616.

83. Zipris D., Lien E., Nair A., Xie J.X., Greiner D.L., Mordes J.P., Rossini A.A. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J. Immunol., 2007, Vol. 178, no. 2, pp. 693-701.

84. Zucchini N., Bessou G, Traub S., Robbins S.H., Uematsu S., Akira S., Alexopoulou L., Dalod M. Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a Herpesvirus infection. J. Immunol., 2008, Vol. 180, no. 9, pp. 5799-5803.


Для цитирования:


Никонова А.А., Хаитов М.Р., Хаитов Р.М. ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ АГОНИСТОВ И АНТАГОНИСТОВ Toll-ПОДОБНЫХ РЕЦЕПТОРОВ ДЛЯ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ВИРУСНЫХ ИНФЕКЦИЙ. Медицинская иммунология. 2019;21(3):397-406. https://doi.org/10.15789/1563-0625-2019-3-397-406

For citation:


Nikonova A.A., Khaitov M.R., Khaitov R.M. PROSPECTS OF Toll-LIKE RECEPTOR AGONISTS AND ANTAGONISTS FOR PREVENTION AND TREATMENT OF VIRAL INFECTIONS. Medical Immunology (Russia). 2019;21(3):397-406. (In Russ.) https://doi.org/10.15789/1563-0625-2019-3-397-406

Просмотров: 97


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)