Preview

Medical Immunology (Russia)

Advanced search

VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-1 SIGNALING AS A NOVEL MECHANISM OF T CELL SUPPRESSION IN TUMOR NEOANGIOGENESIS

https://doi.org/10.15789/1563-0625-2019-4-653-660

Abstract

The immunomodulatory activity of vascular endothelial growth factors (VEGFs) reveals a new role of neoangiogenesis in tumor development. Most of VEGF effects on T cells are mediated through the VEGF-R2 receptors. Placental growth factor (PlGF) belongs to the VEGFs family and is a selective ligand for VEGF-R1. In order to study the role of VEGF-R1-signaling in the regulation of T-cell functions, the effect of PlGF on the proliferation of donor T cell has been investigated. PlGF has been shown to inhibit the proliferation of T-lymphocytes in cultures of anti-CD3-stimulated mononuclear cells in a wide dose range, suppressing the proliferative response of both CD4 + and CD8 + T cells. The suppressive effect of PlGF was mediated through the direct interaction with VEGFR-1 on T-cells that was evidenced by the expression of VEGFR-1 by T-lymphocytes (especially after their activation) and by blocking the suppressive effect of PlGF with neutralizing anti-VEGFR-1 antibodies. Given the increased levels of PlGF in many tumors, this factor may play an important role in immunomodulation during tumor growth, mediating its effect through the VEGFR-1 signaling pathway.

About the Authors

E. R. Chernykh
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, MD, Professor (Medicine), Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Cellular Immunotherapy

630099, Russian Federation, Novosibirsk, Yadrintsevskaya str., 14

Phone: 7 (383) 236-03-29
Fax: 7 (383) 222-70-28



O. Yu. Leplina
Research Institute of Fundamental and Clinical Immunology

PhD, MD (Medicine), Leading Research Associate, Laboratory of Cellular Immunotherapy

630099, Russian Federation, Novosibirsk, Yadrintsevskaya str., 14



M. A. Tikhonova
Research Institute of Fundamental and Clinical Immunology

PhD (Biology), Senior Research Associate, Laboratory of Cellular Immunotherapy

630099, Russian Federation, Novosibirsk, Yadrintsevskaya str., 14



E. V. Batorov
Research Institute of Fundamental and Clinical Immunology

PhD (Medicine), Research Associate, Laboratory of Cellular Immunotherapy

630099, Russian Federation, Novosibirsk, Yadrintsevskaya str., 14



A. A. Ostanin
Research Institute of Fundamental and Clinical Immunology

PhD, MD, Professor (Medicine), Main Research Associate, Laboratory of Cellular Immunotherapy

630099, Russian Federation, Novosibirsk, Yadrintsevskaya str., 14



References

1. Dikov M., Ohm J., Ray N. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol., 2005, Vol. 174, no. 1, pp. 215-222.

2. Lee S., Jeong D., Han Y-S., Baek M. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, Vol. 89, no. 1, pp. 1-8.

3. Basu A., Hoerning A., Datta D., Edelbauer M., Stack M., Calzadilla K., Pal S., Briscoe D. Cutting edge: vascular endothelial growth factor-mediated signaling in human CD45RO+CD4+ T cells promotes Akt and ERK activation and costimulates IFN-gamma production. J. Immunol., 2010, Vol. 184, no. 2, pp. 545-549.

4. Li H., Jin Y., Hu Y., Jiang L., Liu F., Zhang Y., Hao Y., Chen S., Wu X., Liu Y. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci., 2018, Vol. 109, no. 5, pp. 1532-1544.

5. Gavalas N., Tsiatas M., Tsitsilonis О., Politi Е., Ioannou К., Ziogas А., Rodolakis А., Vlahos G., Thomakos N., Haidopoulos D., Terpos E., Antsaklis A., Dimopoulos M.A., Bamias A. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br. J. Cancer, 2012, Vol. 107, no. 11, pp. 1869-1875.

6. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, Vol. 69, Suppl. 3, pp. 4-10.

7. Li Y.L, Zhao H., Ren X. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol. Med., 2016, Vol. 13, no. 2, pp. 206-214.

8. Gourley M., Williamson J. Angiogenesis: new targets for the development of anticancer chemotherapies. Curr. Pharm. Des., 2000, Vol. 6, no. 4, pp. 417-439.

9. de Falco S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med., 2012, Vol. 44, no. 1, pp. 1-9.

10. Lin Y-L, Liang Y-C, Chiang B-L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol., 2007, Vol. 82, no. 6, pp. 1473-2480.

11. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell, 2000, Vol. 100, no. 1, pp. 57-70.

12. Dewerchin M., Carmeliet P. Placental growth factor in cancer. Expert Opin. Ther. Targets., 2014, Vol. 18, no. 11, pp. 1339-1354.

13. Mor F., Quintana F.J., Cohen I.R. Angiogenesis inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol., 2004, Vol. 172, no. 7, pp. 4618-4623.

14. Dikov M., Ohm J., Ray N. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol., 2005, Vol. 174, no. 1, pp. 215-222.

15. Hoff P., Machado K. Role of angiogenesis in the pathogenesis of cancer. Cancer Treat. Rev., 2012, Vol. 38, no. 7, pp. 825-833.

16. Ohm J.E., Gabrilovich D.I., Sempowski G.D., Kisseleva E., Parman K.S., Nadaf S., Carbone D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood, 2003, Vol. 101, no. 12, pp. 4878-4886.

17. Gavalas N., Tsiatas M., Tsitsilonis О., Politi Е., Ioannou К., Ziogas А., Rodolakis А., Vlahos G., Thomakos N., Haidopoulos D., Terpos E., Antsaklis A., Dimopoulos M.A., Bamias A. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br. J. Cancer, 2012, Vol. 107, no. 11, pp. 1869-1875.

18. Huang Y., Chen X., Dikov M., Novitskiy S., Mosse C., Yang L. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood, 2007, Vol. 110, no. 2, pp. 624-631.

19. Oyama T., Ran S., Ishida T., Nadaf S., Kerr L., Carbone D.P., Gabrilovich D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hematopoietic progenitor cells. J. Immunol., 1998, Vol. 160, no. 3, pp. 1224-1232.

20. Gourley M., Williamson J. Angiogenesis: new targets for the development of anticancer chemotherapies. Curr. Pharm. Des., 2000, Vol. 6, no. 4, pp. 417-439.

21. Incio J., Tam J., Rahbari N., Suboj P., McManus D.T., Chin S., Vardam T.D., Batista A., Babykutty S., Jung K., Khachatryan A., Hato T., Ligibel J.A., Krop I.E., Puchner S.B., Schlett C.L., Hoffmman U., Ancukiewicz M., Shibuya M., Carmeliet P., Soares R., Duda D.G., Jain R.K., Fukumura D. PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity. Clin. Cancer Res., 2016, Vol. 22, no. 12, pp. 2993-3004.

22. Ozao-Choy J., Ma G., Kao J., Wang G.X., Meseck M., Sung M., Schwartz M., Divino C., Pan P., Chen S. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res., 2009, Vol. 69, no. 6, pp. 2514-2522.

23. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell, 2000, Vol. 100, no. 1, pp. 57-70.

24. Lee S., Jeong D., Han Y-S., Baek M. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, Vol. 89, no. 1, pp. 1-8.

25. Tchaikovski V., Fellbrich G., Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler. Thromb. Vasc. Biol., 2008, Vol. 28, no. 2, pp. 322-328.

26. Hoff P., Machado K. Role of angiogenesis in the pathogenesis of cancer. Cancer Treat. Rev., 2012, Vol. 38, no. 7, pp. 825-833.

27. Li H., Jin Y., Hu Y., Jiang L., Liu F., Zhang Y., Hao Y., Chen S., Wu X., Liu Y. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci., 2018, Vol. 109, no. 5, pp. 1532-1544.

28. Voron T., Marcheteau E., Pernot S., Colussi O., Tartour E., Taieb J., Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol., 2014, Vol. 4, p. 70.

29. Huang Y., Chen X., Dikov M., Novitskiy S., Mosse C., Yang L. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood, 2007, Vol. 110, no. 2, pp. 624-631.

30. Li Y.L, Zhao H., Ren X. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol. Med., 2016, Vol. 13, no. 2, pp. 206-214.

31. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.L., Latreche S., Bergaya S., Benhamouda N., Tanchot C., Stockmann C., Combe P., Berger A., Zinzindohoue F., Yagita H., Tartour E., Taieb J., Terme M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med., 2015, Vol. 212, no. 2, pp. 139-148.

32. Incio J., Tam J., Rahbari N., Suboj P., McManus D.T., Chin S., Vardam T.D., Batista A., Babykutty S., Jung K., Khachatryan A., Hato T., Ligibel J.A., Krop I.E., Puchner S.B., Schlett C.L., Hoffmman U., Ancukiewicz M., Shibuya M., Carmeliet P., Soares R., Duda D.G., Jain R.K., Fukumura D. PlGF/VEGFR-1 signaling promotes macrophage polarization and accelerated tumor progression in obesity. Clin. Cancer Res., 2016, Vol. 22, no. 12, pp. 2993-3004.

33. Lin Y-L, Liang Y-C, Chiang B-L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol., 2007, Vol. 82, no. 6, pp. 1473-2480.

34. Yang J., Yan J., Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, Vol. 9, p. 978.

35. Lee S., Jeong D., Han Y-S., Baek M. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, Vol. 89, no. 1, pp. 1-8.

36. Mor F., Quintana F.J., Cohen I.R. Angiogenesis inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol., 2004, Vol. 172, no. 7, pp. 4618-4623.

37. Ziogas A.C., Gavalas N.G., Tsiatas M., Tsitsilonis O., Politi E., Terpos E., Rodolakis A., Vlahos G., Thomakos N., Haidopoulos D., Antsaklis A., Dimopoulos M.A., Bamias A. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2. Int. J. Cancer., 2012, Vol. 130, no. 4, pp. 857-864.

38. Ohm J.E., Gabrilovich D.I., Sempowski G.D., Kisseleva E., Parman K.S., Nadaf S., Carbone D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood, 2003, Vol. 101, no. 12, pp. 4878-4886.

39. Li H., Jin Y., Hu Y., Jiang L., Liu F., Zhang Y., Hao Y., Chen S., Wu X., Liu Y. The PLGF/c-MYC/miR-19a axis promotes metastasis and stemness in gallbladder cancer. Cancer Sci., 2018, Vol. 109, no. 5, pp. 1532-1544.

40. Oyama T., Ran S., Ishida T., Nadaf S., Kerr L., Carbone D.P., Gabrilovich D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hematopoietic progenitor cells. J. Immunol., 1998, Vol. 160, no. 3, pp. 1224-1232.

41. Li Y.L, Zhao H., Ren X. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol. Med., 2016, Vol. 13, no. 2, pp. 206-214.

42. Ozao-Choy J., Ma G., Kao J., Wang G.X., Meseck M., Sung M., Schwartz M., Divino C., Pan P., Chen S. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res., 2009, Vol. 69, no. 6, pp. 2514-2522.

43. Lin Y-L, Liang Y-C, Chiang B-L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol., 2007, Vol. 82, no. 6, pp. 1473-2480.

44. Mor F., Quintana F.J., Cohen I.R. Angiogenesis inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J. Immunol., 2004, Vol. 172, no. 7, pp. 4618-4623.

45. Tchaikovski V., Fellbrich G., Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler. Thromb. Vasc. Biol., 2008, Vol. 28, no. 2, pp. 322-328.

46. Ohm J.E., Gabrilovich D.I., Sempowski G.D., Kisseleva E., Parman K.S., Nadaf S., Carbone D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood, 2003, Vol. 101, no. 12, pp. 4878-4886.

47. Voron T., Marcheteau E., Pernot S., Colussi O., Tartour E., Taieb J., Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol., 2014, Vol. 4, p. 70.

48. Oyama T., Ran S., Ishida T., Nadaf S., Kerr L., Carbone D.P., Gabrilovich D.I. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hematopoietic progenitor cells. J. Immunol., 1998, Vol. 160, no. 3, pp. 1224-1232.

49. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.L., Latreche S., Bergaya S., Benhamouda N., Tanchot C., Stockmann C., Combe P., Berger A., Zinzindohoue F., Yagita H., Tartour E., Taieb J., Terme M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med., 2015, Vol. 212, no. 2, pp. 139-148.

50. Ozao-Choy J., Ma G., Kao J., Wang G.X., Meseck M., Sung M., Schwartz M., Divino C., Pan P., Chen S. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res., 2009, Vol. 69, no. 6, pp. 2514-2522.

51. Yang J., Yan J., Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, Vol. 9, p. 978.

52. Tchaikovski V., Fellbrich G., Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler. Thromb. Vasc. Biol., 2008, Vol. 28, no. 2, pp. 322-328.

53. Ziogas A.C., Gavalas N.G., Tsiatas M., Tsitsilonis O., Politi E., Terpos E., Rodolakis A., Vlahos G., Thomakos N., Haidopoulos D., Antsaklis A., Dimopoulos M.A., Bamias A. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2. Int. J. Cancer., 2012, Vol. 130, no. 4, pp. 857-864.

54. Voron T., Marcheteau E., Pernot S., Colussi O., Tartour E., Taieb J., Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol., 2014, Vol. 4, p. 70.

55. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A.L., Latreche S., Bergaya S., Benhamouda N., Tanchot C., Stockmann C., Combe P., Berger A., Zinzindohoue F., Yagita H., Tartour E., Taieb J., Terme M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med., 2015, Vol. 212, no. 2, pp. 139-148.

56. Yang J., Yan J., Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, Vol. 9, p. 978.

57. Ziogas A.C., Gavalas N.G., Tsiatas M., Tsitsilonis O., Politi E., Terpos E., Rodolakis A., Vlahos G., Thomakos N., Haidopoulos D., Antsaklis A., Dimopoulos M.A., Bamias A. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2. Int. J. Cancer., 2012, Vol. 130, no. 4, pp. 857-864.


Review

For citations:


Chernykh E.R., Leplina O.Yu., Tikhonova M.A., Batorov E.V., Ostanin A.A. VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-1 SIGNALING AS A NOVEL MECHANISM OF T CELL SUPPRESSION IN TUMOR NEOANGIOGENESIS. Medical Immunology (Russia). 2019;21(4):653-660. (In Russ.) https://doi.org/10.15789/1563-0625-2019-4-653-660

Views: 1405


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)