DEPENDENCE OF NEUTROPHIL RESPIRATORY BURST ON THEIR METABOLIC STATE IN THE PATIENTS WITH ACUTE DESTRUCTIVE PANCREATITIS OF DIFFERENT SEVERITY
https://doi.org/10.15789/1563-0625-2019-1-77-88
Abstract
The aim of the study was to investigate a dependence of respiratory burst state in neutrophils on activities of their intracellular enzymes in patients with acute destructive pancreatitis (ADP) of different severity. The study included 50 patients with ADP of moderate (17 cases) and severe degree (33 cases). A group of 47 healthy people was examined as controls. The respiratory burst state was examined in neutrophilic granulocytes by means of chemiluminescence assays. A study of NAD(P)-dependent dehydrogenases activity in blood neutrophils was performed using bioluminescent analysis. We have revealed that a decrease in spontaneous and induced synthesis of superoxide radical by neutrophils was detected in ADP patients, independently of the disease severity. Kinetics of primary ROS synthesis was also impaired in patients with severe ADP. In patients with moderate disorder, the level of secondary ROS synthesis by neutrophils proved to be increased, whereas, in cases of severe disease, a disturbed kinetics of secondary ROS synthesis by neutrophils was detected at a resting state, showing increased synthetic level upon additional induction by zymosan. Metabolism of neutrophils in patients with ADP is characterized by activation of plastic processes (due to the products of the pentose phosphate cycle) and aerobic energy (increased substrate flow intensity in the cycle of tricarboxylic acids). However, NADPH neutrophilic pool in patients with moderate disorder could be additionally supported by enzymatic malic enzyme reactions and NADP-dependent glutamate dehydrogenase. Activation of peroxidation events in patients with severe ADP is revealed, which needs NADPH compensation. The state of energy processes in blood neutrophils in patients with ADP is characterized by lacking changes in glycolytic activity, and increased intensity of substrate flux along tricarboxylic acids cycle. Activity of aerobic processes in patients with moderate disease is maintained by the products of amino acid metabolism (via glutamate dehydrogenase), whereas, in severe ADP it may be provided by products of lipid catabolism. Using correlation analysis, a dependence of respiratory burst of neutrophils on the state of their metabolism was studied. We have found that intensity and kinetics of respiratory burst in the neutrophils of controls depends only on the activity of NADP-dependent dehydrogenases. The changes in cellular metabolic activity in the patients with moderate ADP led to disturbances of their regulatory effect upon the state of neutrophil respiratory burst. In patients with severe disorder, the degree a neutrophil respiratory burst is stimulated by reductive amination of α-ketoglutarate, being, however, inhibited by intracellular peroxidation processes.
About the Authors
A. A. SavchenkoRussian Federation
PhD, MD (Medicine), Professor, Head, Laboratory of Molecular and Cellular Physiology and Pathology
660022, Krasnoyarsk, Partizan Zheleznyak str., 3g
Phone/Fax: 7 (391) 228-06-33
A. G. Borisov
Russian Federation
PhD (Medicine), Leading Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology; Assistant Professor, Department of Infections
Krasnoyarsk
D. E. Zdzitovetskiy
Russian Federation
PhD, MD (Medicine), Head, M.Yu. Lubensky Department of Surgical Diseases
Krasnoyarsk
A. Yu. Medvedev
Russian Federation
Graduate Student, Laboratory of Molecular and Cellular Physiology and Pathology
Krasnoyarsk
I. I. Gvozdev
Russian Federation
Junior Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology
Krasnoyarsk
References
1. Багненко С.Ф., Толстой А.Д., Краснорогов В.Б., Курыгин А.А., Гринев М.В., Лапшин В.Н., Гольцов В.Р. Острый панкреатит (Протоколы диагностики и лечение) // Анналы хирургической гепатологии, 2006. Т. 11, № 1. С. 60-66. [Bagnenko S.F., Tolstoy A.D., Krasnorogov V.B., Kurygin A.A., Grinev M.V., Lapshin V.N., Goltsov V.R. Acute pancreatitis (diagnostic protocols and treatment). Annaly khirurgicheskoy gepatologii = Annals of Surgical Hepatology, 2006, Vol. 11, no. 1, pp. 60-66. (In Russ.)]
2. Владимиров Ю.А., Проскурнина Е.В. Свободные радикалы и клеточная хемилюминесценция // Успехи биологической химии, 2009. Т. 49. С. 341-388. [Vladimirov Yu.A., Proskurina E.V. Free radicals and cellular chemiluminescence. Uspekhi biologicheskoy khimii = Advances of Biological Chemistry, 2009, Vol. 49, pp. 341-388. (In Russ.)]
3. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.Л. Гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет, 2017. Т. 7, № 3. С. 219-230. [Nesterova I.V., Kolesnikova N.V., Chudilova G.A., Lomtatidze L.V., Kovaleva S.V., Evglevsky A.A., Nguyen T.L. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 1. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2017, Vol. 7, no. 3, pp. 219-230. (In Russ.)]
4. Савченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом // Бюллетень экспериментальной биологии и медицины, 2015. Т. 159, № 5. С. 656-660. [Savchenko A.A. Evaluation of NAD(P)-dependent dehydrogenase activities in neutrophilic granulocytes by the bioluminescent method. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2015, Vol. 159, no. 5, pp. 656-660. (In Russ.)]
5. Савченко А.А., Анисимова Е.Н., Борисов А.Г., Кондаков А.Е. Витамины как основа иммунометаболической терапии. Красноярск: Издательство КрасГМУ, 2011. 213 с. [Savchenko A.A., Anisimova E.N., Borisov A.G., Kondakov A.E. Vitamins as the basis of immunometabolic therapy]. Krasnoyarsk: Krasnoyarsk State Medical University, 2011. 213 p.
6. Савченко А.А., Борисов А.Г., Кудрявцев И.В., Гвоздев И.И., Мошев А.В., Черданцев Д.В., Первова О.В. Взаимосвязь фенотипа и метаболизма нейтрофилов крови у больных распространенным гнойным перитонитом в динамике послеоперационного периода // Инфекция и иммунитет, 2017. Т. 7, № 3. С. 259- 270. [Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Gvozdev I.I., Moshev A.V., Cherdantsev D.V., Pervova O.V. The phenotype and metabolism relationship of blood neutrophils in patients with widespread purulent peritonitis in the postoperative period dynamics. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2017, Vol. 7, no. 3, pp. 259-270. (In Russ.)]
7. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная активность нейтрофильных гранулоцитов и уровни концентрации цитокинов у больных распространенным гнойным пе-ритонитом // Цитокины и воспаление, 2013. Т. 12, № 1-2. С. 115-119. [Savchenko A.A., Zdzitovetskiy D.E., Borisov A.G., Luzan N.A. Neutrophil chemiluminescent activity and cytokine concentration levels in patients with extensive purulent peritonitis.Tsitokiny i vospalenie = Cytokines and Inflammation, 2013, Vol. 12, no. 1-2, pp. 115-119. (In Russ.)]
8. Azevedo E.P., Rochael N.C., Guimarães-Costa A.B., de Souza-Vieira T.S., Ganilho J., Saraiva E.M., Palhano F.L., Foguel D. A Metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem., 2015, Vol. 290, no. 36, pp. 22174-22183.
9. Bone R.S., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. American college of Chest Physicians. Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guide lines for the use of innovative therapies in sepsis. Crit. Care Med., 1992, Vol. 20, no. 6, pp. 864-874.
10. Cho J.H., Kim T.N., Chung H.H., Kim K.H. Comparison of scoring systems in predicting the severity of acute pancreatitis. World J. Gastroenterol., 2015, Vol. 21, no. 8, pp. 2387-2394.
11. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med., 2016, Vol. 95, pp. 27-42.
12. Dvorožňáková E., Bucková B., Hurníková Z., Revajová V., Lauková A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol., 2016, Vol. 231, pp. 69-76.
13. Hashimoto R., Gupte S. Pentose shunt, glucose-6-phosphate dehydrogenase, NADPH redox, and stem cells in pulmonary hypertension. Adv. Exp. Med. Biol., 2017, Vol. 967, pp. 47-55.
14. Jacob C.O., Yu N., Yoo D.G., Perez-Zapata L.J., Barbu E.A., Kaplan M.J., Purmalek M., Pingel J.T., Idol R.A., Dinauer M.C. haploinsufficiency of NADPH oxidase subunit neutrophil cytosolic factor 2 is sufficient to accelerate full-blown lupus in NZM 2328 mice. Arthritis Rheumatol., 2017, Vol. 69, no. 8, pp. 1647-1660.
15. Laurenti G., Tennant D.A. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Biochem. Soc. Trans., 2016, Vol. 44, no. 4, pp. 1111-1116.
16. le Gall J.-R., Lemeshow S., Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA, 1993, Vol. 270, pp. 2957-2963.
17. Li X.J., Deng L., Brandt S.L., Goodwin C.B., Ma P., Yang Z., Mali R.S., Liu Z., Kapur R., Serezani C.H., Chan R.J. Role of p85αin neutrophil extra- and intracellular reactive oxygen species generation. Oncotarget, 2016, Vol. 7, no. 17, pp. 23096-23105.
18. Majidi S., Golembioski A., Wilson S.L., Thompson E.C. Acute pancreatitis: etiology, pathology, diagnosis, and treatment. South Med. J., 2017, Vol. 110, no. 11, pp. 727-732.
19. Marchi L.F., Sesti-Costa R., Ignacchiti M.D., Chedraoui-Silva S., Mantovani B. In vitroactivation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. Int. Immunopharmacol., 2014, Vol. 18, no. 2, pp. 228-235.
20. Miralda I., Uriarte S.M., McLeish K.R. Multiple phenotypic changes define neutrophil priming. Front. Cell. Infect. Microbiol., 2017, Vol. 7, p. 217.
21. Ryu J.C., Kim M.J., Kwon Y., Oh J.H., Yoon S.S., Shin S.J., Yoon J.H., Ryu J.H. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol., 2017, Vol. 10, no. 3, pp. 757-774.
22. Stålhammar M.E., Douhan Håkansson L., Sindelar R. Bacterial N-formyl peptides reduce PMA- and Escherichia coli-induced neutrophil respiratory burst in term neonates and adults. Scand. J. Immunol., 2017, Vol. 85, no. 5, pp. 365-371.
23. Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonca A., Bruining H., Reinhart C.K., Suter P.M., Thijs L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med., 1996, Vol. 22, no. 7, pp. 707-710.
24. Walmsley S.R., Whyte M.K. Neutrophil energetics and oxygen sensing. Blood, 2014, Vol. 123, no. 18, pp. 2753-2754.
25. Walvekar A.S., Choudhury R., Punekar N.S. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity. PLoS ONE, 2014, Vol. 9, no. 7, e101662. doi: 10.1371/journal.pone.0101662.
26. Winterbourn C.C., Kettle A.J., Hampton M.B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem., 2016, Vol. 85, pp. 765-792.
27. Yang P., Huang S., Yan X., Huang G., Dong X., Zheng T., Yuan D., Wang R., Li R., Tan Y., Xu A. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic. Biol. Med., 2014, Vol. 70, pp. 54-67.
28. Yao P., Sun H., Xu C., Chen T., Zou B., Jiang P., Du W. Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions. J. Biol. Chem., 2017, Vol. 292, no. 41, pp. 17113-17120.
29. Zhai X., Meng R., Li H., Li J., Jing L., Qin L., Gao Y. miR-181a modulates chondrocyte apoptosis by targeting glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L) in osteoarthritis. Med. Sci. Monit., 2017, Vol. 23, pp. 1224-1231.
Review
For citations:
Savchenko A.A., Borisov A.G., Zdzitovetskiy D.E., Medvedev A.Yu., Gvozdev I.I. DEPENDENCE OF NEUTROPHIL RESPIRATORY BURST ON THEIR METABOLIC STATE IN THE PATIENTS WITH ACUTE DESTRUCTIVE PANCREATITIS OF DIFFERENT SEVERITY. Medical Immunology (Russia). 2019;21(1):77-88. (In Russ.) https://doi.org/10.15789/1563-0625-2019-1-77-88