Preview

Medical Immunology (Russia)

Advanced search

INFLUENCE OF ANTIBODIES AGAINST CTLA-4 AND PD-1 UPON QUANTITIES OF THEIR TARGET RECEPTORS

https://doi.org/10.15789/1563-0625-2019-1-59-68

Abstract

Inhibitory receptors CTLA-4 and PD-1 (immune checkpoints) play a key role in regulation of immune reactions. They suppress excessive immune response against pathogenic microbes and prevent autoimmune reactions. The immune checkpoints are targets of the modern effective therapy based on human and humanized monoclonal antibodies (ipilimumab and nivolumab, tremelimumab, pembrolizumab, etc). However, despite its high efficiency compared to standard chemotherapy, the therapy based on blocking immune check points is facing several problems, i.e., high therapy cost and severe negative autoimmune-related side effects. Unfortunately, this therapy helps to minority of the patients. Hence, further studies are required to improve its efficiency and safety, as well as to search for selection criteria of the patients who would benefit from the therapy. An appealing approach to reduce negative side effects from immune checkpoint inhibition is application of the blocking antibodies, aiming for ex vivo generation of patients’ activated immune cells for cancer therapy, thus avoiding systemic drug administration. Our aim was to elucidate influence of immune checkpoint blocking antibodies on the expression of CTLA-4 and PD-1 in such an in vitro model. First of all, we have determined quantities of lymphocyte receptors in peripheral blood of healthy volunteers, or cancer patients with disseminated melanoma. Moreover, we defined effect from the addition of antibodies against immune checkpoints on proportions of cells expressing CTLA-4 and PD-1 in the population of phytohemagglutininactivated lymphocytes. Our study demonstrated that, in presence of antibodies to either of the two checkpoints during in vitro cell activation, the blockade of specific target receptor is accompanied by reduced number of cells positive for another checkpoint. Hence, the antibodies directed against PD-1 or CTLA-4 seem to suppress both negative signal cascades at once, if tested under such experimental conditions. Noteworthy, the response to blocking antibodies for different immune checkpoints varied for different donors. Our data may be used for development of effective combinations of lymphocyte activators and immune check-point inhibitors, for in vitro generation of activated lymphocytes applied for adoptive cancer therapy, as well as for prediction of possible responses to antibodies against CTLA-4 or PD-1, aiming to select the best personalized cancer immunotherapy.

About the Authors

I. O. Chikileva
N. Blokhin Medical Research Center of Oncology
Russian Federation

PhD (Biology), Junior Research Associate, Laboratory of Cell Immunity, Research Institute of Experimental Diagnosis and Therapy of Tumors

115211, Moscow, Kashirskoe highway, 24
Phone/Fax: 7 (499) 324-27-94



I. Zh. Shubina
N. Blokhin Medical Research Center of Oncology
Russian Federation

PhD, MD (Biology), Leading Research Associate, Laboratory of Cell Immunity, Research Institute of Experimental Diagnosis and Therapy of Tumors

Moscow



I. V. Samoylenko
N. Blokhin Medical Research Center of Oncology
Russian Federation

PhD (Medicine), Department of Tumor Biotherapy

Moscow



A. V. Karaulov
I. Sechenov First Moscow State Medical University
Russian Federation

PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Head, Laboratory of Clinical Immunology and Allergology

Moscow



M. V. Kiselevsky
N. Blokhin Medical Research Center of Oncology
Russian Federation

PhD, MD (Medicine), Professor, Head, Laboratory of Cell Immunity, Research Institute of Experimental Diagnosis and Therapy of Tumors

Moscow



References

1. Bally A.P., Austin J.W., Boss J.M. Genetic and epigenetic regulation of PD-1 expression. J. Immunol., 2016, Vol. 196, no. 6, pp. 2431-2437.

2. Beldi-Ferchiou A., Lambert M., Dogniaux S., Vély F., Vivier E., Olive D., Dupuy S., Levasseur F., Zucman D., Lebbé C., Sène D., Hivroz C., Caillat-Zucman S. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma.Oncotarget, 2016, Vol. 7, no. 45, pp. 72961-72977.

3. Bjoern J., Juul Nitschke N., Zeeberg Iversen T., Schmidt H., Fode K., Svane I.M. Immunological correlates of treatment and response in stage IV malignant melanoma patients treated with Ipilimumab. Oncoimmunology, 2016, Vol. 5, no. 4, e1100788. doi:10.1080/2162402X.2015.1100788.

4. Buchbinder E., Hodi F.S. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. J. Clin. Invest., 2015, Vol. 125, pp. 3377-3383.

5. Chan D.V., Gibson H.M., Aufiero B.M., Wilson A.J., Hafner M.S., Mi Q.S., Wong H.K. Differential CTLA- 4 expression in human CD4 + versus CD8 + T cells is associated with increased NFAT1 and inhibition of CD4 + proliferation.Genes Immun., 2014, Vol. 15, no. 1, pp. 25-32.

6. Corse E., Allison J.P. Cutting edge: CTLA-4 on effector T cells inhibits in trans. J. Immunol., 2012, Vol. 189, pp. 1123-1127.

7. Das R., Verma R., Sznol M., Boddupalli C.S., Gettinger S.N., Kluger H., Callahan M., Wolchok J.D., Halaban R., Dhodapkar M.V., Dhodapkar K.M. Combination therapy with anti-CTLA4 and anti-PD1 leads to distinct immunologic changes in vivo. J. Immunol., 2015, Vol. 194, no. 3, pp. 950-959.

8. Fallarino F., Fields P.E., Gajewski T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med., 1998, Vol. 188, no. 1, pp. 205-210.

9. Fife B.T., Guleria I., Gubbels Bupp M., Eagar T.N., Tang Q., Bour-Jordan H., Yagita H., Azuma M., Sayegh M.H., Bluestone J.A. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pat hway.J. Exp. Med., 2006, Vol. 203, pp. 2737-2747.

10. Gibson H.M., Hedgcock C.J., Aufiero B.M., Wilson A.J., Hafner M.S., Tsokos G.C., Wong H.K. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J. Immunol., 2007, Vol. 179, no. 6, pp. 3831-3840.

11. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, Vol. 26, pp. 677-704.

12. Khattri R., Auger J.A., Griffin M.D., Sharpe A.H., Bluestone J.A. Lymphoproliferative disorder in CTLA- 4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol., 1999, Vol. 162, pp. 5784-5791.

13. Larkin J., Lao C.D., Urba W.J., McDermott D.F., Horak C., Jiang J., Wolchok J.D. Efficacy and safety of nivolumab in patients with BRAF V600Mutant and BRAF wild-type advanced melanomaa pooled analysis of 4 clinical trials. JAMA Oncol., 2015, Vol. 1, no. 4, pp. 433-440.

14. Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P., Ferrucci P.F., Hill A., Wagstaff J., Carlino M.S., Haanen J.B., Maio M., Marquez-Rodas I., McArthur G.A., Ascierto P.A., Long G.V., Callahan M.K., Postow M.A. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, Vol. 373, no. 1, pp. 23-34.

15. Li X., Wang J., Yao Y., Yang L., Li Z., Yu C., Zhao P., Yu Y., Wang L. Comparative efficacy and safety of immune checkpoint inhibitor-related therapies for advanced melanoma: a Bayesian network analysis.Oncotarget, 2017, Vol. 8, no. 48, pp. 83637-83649.

16. Linsley P.S., Bradshaw J., Greene J., Peach R., Bennett K.L., Mittler R.S. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity, 1996, Vol. 4, no. 6, pp. 535-543.

17. Mahoney K.M., Freeman G.J., McDermott D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther., 2015, Vol. 37, pp. 764-782.

18. Niezgoda A., Niezgoda P., Czajkowski R. Novel approaches to treatment of advanced melanoma: a review on targeted therapy and immunotherapy.Biomed. Res. Int., 2015, Vol. 2015, 851387. doi:10.1155/2015/851387.

19. Okazaki T., Tanaka Y., Nishio R., Mitsuiye T., Mizoguchi A., Wang J., Ishida M., Hiai H., Matsumori A., Minato N., Honjo T. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med., 2003, Vol. 9, pp. 1477-1483.

20. Pentcheva-Hoang T., Chen L., Pardoll D.M., Allison J.P. Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. PNAS, 2007, Vol. 104, no. 45, pp. 17765- 17770.

21. Pianko M.J., Funt S.A. , Page D.B., Cattry D., Scott E.C., Ansel S.M.l, Borrello I.M., Gutierrez M., Lendvai N., Hassoun H., Landgren C.O., Lesokhin A.M. Efficacy and toxicity of therapy immediately after treatment with nivolumab in relapsed multiple myeloma. Leuk. Lymphoma, 2018, Vol. 59, no. 1, pp. 221-224.

22. Poh S.L., Linn Y.C. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts. Cancer Immunol. Immunother., 2016, Vol. 65, no. 5, pp. 525-536.

23. Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S., Sansom D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4.Science, 2011, Vol. 332, no. 6029, pp. 600-603.

24. Riley J.L., June C.H. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood, 2005, Vol. 105, no. 1, pp. 13-21.

25. Salama A.D., Chitnis T., Imitola J., Ansari M. J., Akiba H., Tushima F., Azuma M., Yagita H., Sayegh M.H., Khoury S.J. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis.J. Exp. Med., 2003, Vol. 198, pp. 71-78.

26. Stojanovic A., Fiegler N., Brunner-Weinzierl M., Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-γproduction in response to mature dendritic cells.J. Immunol., 2014, Vol. 192, no. 9, pp. 4184-4191.

27. Tivol E.A., Borriello F., Schweitzer A.N., Lynch W.P., Bluestone J.A., Sharpe A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, Vol. 3, pp. 541-547.

28. Walker L.S.K., Sansom D.M. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol., 2015, Vol. 36, no. 2, pp. 63-70.

29. Walunas T.L., Lenschow D.J., Bakker C.Y., Linsley P.S., Freeman G.J., Green J.M., Thompson C.B., Bluestone J.A. CTLA-4 can function as a negative regulator of T cell activation.Immunity, 1994, Vol. 1, no. 5, pp. 405-413.

30. Wang C.J., Kenefeck R., Wardzinski L., Attridge K., Manzotti C., Schmidt E.M., Qureshi O.S., Sansom D.M., Walker L.S.K. Cutting edge: cell extrinsic immune regulation by CTLA-4 expressed on conventional T cells. J. Immunol., 2012, Vol. 189, pp. 1118-1120.

31. Weber J., Mandala M., del Vecchio M., Gogas H.J., Arance A.M., Cowey C.L., Dalle S., Schenker M., Chiarion-Sileni V., Marquez-Rodas I., Grob J.J., Butler M.O., Middleton M.R., Maio M., Atkinson V., Queirolo P., Gonzalez R., Kudchadkar R.R., Smylie M., Meyer N. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med., 2017, Vol. 377, no. 19, pp. 1824-1835.

32. Wolchok J.D., Kluger H., Callahan M.K., Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R-A., Reed K., Burke M. M., Caldwell A., Kronenberg S.A., Agunwamba B.U., Zhang X., Lowy I., Inzunza H.D, Feely W., Horak C.E. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, Vol. 369, no. 2, pp. 122-133.


Review

For citations:


Chikileva I.O., Shubina I.Zh., Samoylenko I.V., Karaulov A.V., Kiselevsky M.V. INFLUENCE OF ANTIBODIES AGAINST CTLA-4 AND PD-1 UPON QUANTITIES OF THEIR TARGET RECEPTORS. Medical Immunology (Russia). 2019;21(1):59-68. (In Russ.) https://doi.org/10.15789/1563-0625-2019-1-59-68

Views: 3987


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)