ROLE OF THE REGULATORY T CELLS IN PROGRESSION OF PROSTATE CANCER
https://doi.org/10.15789/1563-0625-2019-4-587-594
Abstract
The existing data on regulatory T cells (Tregs) in prostate cancer suggest that these cells may penetrate the prostate gland malignant tissue, suppressing antitumor immune response, thus promoting aggressive clinical course and low survival of the cancer patients. Evaluation of T cell subpopulations from the tumor microenvironment has shown that the number of CD4+Tregs is associated with inferior clinical prognosis. In particular, each additional CD4+Treg cell has been shown to cause a statistically significant increase in prostate cancer mortality by 12%, regardless of other clinical factors. There are several possible explanations for the increased infiltration of prostate cancer tissue with regulatory T cells. Firstly, malignant cells or tumor-associated macrophages are capable of secreting chemokine CCL22, which has an affinity for the CCR4 receptor expressed on Treg cells. Secondly, cytokines secreted by prostate tumors, such as TGF-β, may regulate the FoxP3 expression, thus expanding the Treg population. TGF-β, in turn, is a multifunctional cytokine that promotes survival and proliferation of transformed cells, including prostate epithelium, as evidenced by increased amounts in the patients with metastatic disease.
About the Authors
S. V. PopovRussian Federation
PhD, MD (Medicine), Professor, Clinical Urologist, Department of General Medical Practice
Moscow
N. V. Sturov
Russian Federation
PhD (Medicine), Head, Department of General Medical Practice
Moscow
N. V. Vorobyev
Russian Federation
Competing Interests:
PhD (Medicine), Head, Urology Unit, Department of Reproductive and Urological Malignancies
Moscow
S. V. Khaidukov
Russian Federation
PhD, MD (Biology), Senior Research Associate, Department of Chemical Biology of Glycans and Lipids
117997, Russian Federation, Moscow, GSP-7, Miklukho-Maklay str., 16/10
+7 (985) 923-41-62
References
1. The state of cancer care for the population of Russia in 2017. Ed. Kaprina A.D., Starinsky V.V., Petrova G.V. Moscow: Moscow Research Institute for them. P.A. Herzen - a branch of the Federal Research Center of Radiology Research Center of the Ministry of Health of Russia, 2018. 236 p. (In Russ.).
2. Khaidukov S.V., Zurochka A.V., Totolian Areg A., Chereshnev V.A. Major and lymphocyte populations of human peripheral blood lymphocytes and their reference values, as assayed by multi-colour cytometry. Medical immunology, 2009, Т. 11, № 2-3, pp. 227-238.
3. Khaidukov S.V., Zurochka A.V. Analysis of t helper subpopulations (Th1, Th2, Treg, Th17, activated T-helpers) by means of flow cytometry. Medical immunology, 2011, vol. 13, N 1, pp 7-16 (In Russ.).
4. Bours M.J., Swennen E.L.R., Di Virgilio F., Cronstein B.N., Dagnelie P.C. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology. Therapeutics., 2006, Vol. 112, no 2, pp. 358-404. DOI: 10.1016/j.pharmthera.2005.04.013.
5. Camisaschi C., Casati C., Rini F., Perego M., De Filippo A., Triebel F., Parmiani G., Belli F., Rivoltini L., Castelli C. LAG-3 expression defines a subset of CD4(+)CD25(high) Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol., 2010, Vol. 184, pp. 6545–6551. DOI: 10.4049/jimmunol.0903879.
6. Davidsson S., Ohlson A.L., Andersson S.O., Fall K., Meisner A., Fiorentino M., Andrén O., Rider J.R. CD4 helper T cells, CD8 cytotoxic T cells, and FOXP3(+) regulatory T cells with respect to lethal prostate cancer. Mod. Pathol. 2013; Vol. 26, pp. 448–455. DOI: 10.1038/modpathol.2012.164.
7. Davidsson S., Andren O., Ohlson A.L., Carlsson J., Andersson S.O., Giunchi F., Rider J.R., Fiorentino M. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer. Prostate., 2018, Vol. 78, no 1, pp. 40–47. DOI:10.1002/pros.23442.
8. Erlandsson A., Carlsson J., Lundholm M., Fält A., Andersson S.O., Andrén O., Davidsson S. M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate., 2018, Vol. 30. DOI: 10.1002/pros.23742.
9. Flammiger A., Weisbach L., Huland H. Tennstedt P., Simon R., Minner S., Bokemeyer C., Sauter G., Schlomm T., Trepel M. High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer. Eur J Cancer., 2013, Vol. 49, pp. 1273–1279. DOI: 10.1016/j.ejca.2012.11.035.
10. Fox S.B., Launchbury R., Bates G.J., Han C., Shaida N., Malone P.R., Harris A.L., Banham A.H. The number of regulatory T cells in prostate cancer is associated with the androgen receptor and hypoxia-inducible factor (HIF)-2alpha but not HIF-1alpha. Prostate, 2007, Vol. 67, pp. 623–629. DOI: 10.1002/pros.20538.
11. Giovannetti A., Pierdominici M., Di Iorio A., Cianci R., Murdaca G., Puppo F., Pandolfi F., Paganelli R. Apoptosis in the homeostasis of the immune system and in human immune mediated diseases. Current. Pharmaceutical. Design., 2008, Vol. 14, no 3, pp. 253-268.
12. Grossman W.J., Verbsky J.W., Barchet W., Colonna M., Atkinson J.P., Ley T.J. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity., 2004, Vol. 21, no 4, pp. 589-601. DOI: 10.1016/j.immuni.2004.09.002.
13. Kiniwa Y., Miyahara Y., Wang H.Y., Peng W., Peng G., Wheeler T.M., Thompson T.C., Old L.J., Wang R.F. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer. Res. 2007, Vol. 13, pp. 6947–6958. DOI: 10.1158/1078-0432.CCR-07-0842.
14. Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S., Gottlieb P.A., Kapranov P., Gingeras T.R.,Fazekas de St Groth B., Clayberger C., Soper D.M., Ziegler S.F., Bluestone J.A. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T-reg cells. J. Exp. Med., 2006, Vol. 203, no 7, pp. 1701-1711. DOI: 10.1084/jem.20060772.
15. Miller A.M., Lundberg K., Ozenci V., Banham A.H., Hellström M., Egevad L., Pisa P. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol., 2006, Vol. 177, no 10, pp. 7398-7405.
16. Pandiyan P., Zheng L., Ishihara S., Reed J., Lenardo M.J. CD4+CD25+FoxP3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature. Immunology., 2007, Vol. 8, no 12, pp. 1353-1362. DOI: 10.1038/ni1536.
17. Read S., Malmstrom V., Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med., 2000, Vol. 192, no 2, pp. 295-302.
18. Schubert L.A., Jeffery E., Zhang Y., Ramsdell F., Ziegler S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem., 2001, Vol. 276? no 40, pp. 37672-37679. DOI: 10.1074/jbc.M104521200.
19. Shevach E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol., 2002, Vol. 2, no 6, pp. 389-400. DOI: 10.1038/nri821.
20. Shevach E.M. Mechanisms of FoxP3+ T regulatory cellmediated suppression. Immunity., 2009, Vol. 30, no 5, pp. 636-645. DOI: 10.1016/j.immuni.2009.04.010.
21. Shevach E.M. Immunology: regulating suppression. Science, 2008, Vol. 322, no 5899, pp. 202-203. DOI: 10.1126/science.1164872.
22. Valdman A., Jaraj S.J., Comperat E., Charlotte F, Roupret M, Pisa P, Egevad L. Distribution of Foxp3-, CD4-, and CD8-positive lymphocytic cells in benign and malignant prostate tissue. APMIS., 2010; Vol. 118, pp. 360–365. DOI: 10.1111/j.1600-0463.2010.02604.x.
23. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over FoxP3+ regulatory T cell function. Science., 2008, Vol. 322, no 5899, pp. 271-275. DOI: 10.1126/science.1160062.
Review
For citations:
Popov S.V., Sturov N.V., Vorobyev N.V., Khaidukov S.V. ROLE OF THE REGULATORY T CELLS IN PROGRESSION OF PROSTATE CANCER. Medical Immunology (Russia). 2019;21(4):587-594. (In Russ.) https://doi.org/10.15789/1563-0625-2019-4-587-594