Preview

Медицинская иммунология

Расширенный поиск

РОЛЬ РАЗЛИЧНЫХ СУБПОПУЛЯЦИЙ CD8+Т-ЛИМФОЦИТОВ ПРИ БЕРЕМЕННОСТИ

https://doi.org/10.15789/1563-0625-2018-5-621-638

Полный текст:

Аннотация

В настоящее время выявлено существование широкого спектра субпопуляций CD8+Тлимфоцитов, среди которых выделяют субпопуляции наивных клеток, клеток памяти, регуляторных. Кроме клеток с высоким уровнем цитотоксической активности, выявлены субпопуляции, обладающие выраженной регуляторной активностью. Каждая субпопуляция характеризуется совокупностью продуцируемых медиаторов, поверхностных и внутриклеточных маркеров, позволяющих предположить их различную функциональную активность в условиях in vivo. В настоящем обзоре описана классификация CD8+Т-лимфоцитов, учитывающая их морфофункциональные признаки. Традиционно считается, что CD8+Т-лимфоциты являются популяцией лимфоцитов, обладающей высокой цитотоксической активностью, что имеет чрезвычайное значение в условиях инвазии полуалогенных плодовых клеток в эндометрий при беременности. Доля CD8+Т-лимфоцитов в децидуальной оболочке довольно велика. В обзоре обсуждаются известные на сегодняшний день механизмы регуляции дифференцировки, избирательной миграции и функциональной активности CD8+Т-лимфоцитов в децидуальной оболочке и плаценте при беременности. Основными факторами цитотоксического действия CD8+Т-лимфоцитов являются перфорин и гранзим. К регуляторным медиаторам CD8+Тлимфоцитов относят цитокины IL-2, IL-5, IL-13, IFNγ, IL-17, TGF-β и IL-10. Для развития эффекторных свойств CD8+Т-лимфоцитов необходима антигенная стимуляция, которую обеспечивает взаимодействие CD8+Т-лимфоцитов с активированными CD4+Т-лимфоцитами или дендритными клетками, воздействие цитокинов. Условия специфической дифференцировки CD8+Т-лимфоцитов формируются за счет различного характера микроокружения. В децидуальной оболочке при беременности наблюдается концентрация CD8+Т-лимфоцитов, но их фенотип и функциональная активность отличаются от CD8+Т-лимфоцитов периферической крови. В настоящее время продолжается изучение механизмов избирательной миграции CD8+Т-лимфоцитов с регуляторными свойствами в децидуальную оболочку. Полагают, что это обеспечивается при участии хемокиновых рецепторов CXCR3 и CCR5, цитокинов IL-6 и IL-15. Характер активности CD8+Т-лимфоцитов и продукция ими цитокинов CSF2, IFNγ, IL-1β, IL-2, IL-6, IL-8,IL-10, IL-12 и TNFα в децидуальной оболочке имеют решающее значение для успешной инвазии клеток трофобласта. В свою очередь, клетки трофобла ста и плаценты способствуют формированию пула регуляторных CD8+Т-лимфоцитов в децидуальной оболочке, способны индуцировать апоптоз CD8+Т-лимфоцитов. Таким образом, взаимодействие CD8+Т-лимфоцитов матери и трофобласта в зоне маточно-плацентарного контакта является важным звеном в формировании иммунологической толлерантности в системе мать-плод.

Об авторах

О. И. Степанова
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта».
Россия

к.б.н., старший научный сотрудник лаборатории межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий.

Санкт-Петербург.


Д. О. Баженов
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта».
Россия

младший научный сотрудник лаборатории межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий.

Санкт-Петербург.


E. В. Хохлова
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта».
Россия

лаборант-исследователь лаборатории межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий.

Санкт-Петербург.


И. Ю. Коган
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта».
Россия

д.м.н., член-корр. РАН, профессор, врио директора.

Санкт-Петербург.


Д. И. Соколов
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»; ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения РФ.
Россия

д.б.н., заведующий лабораторией межклеточных взаимодействий, отдел иммунологии и межклеточных взаимодействий. 

199034, Россия, Санкт-Петербург, Менделеевская линия, 3.



С. А. Сельков
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта».
Россия

д.м.н., профессор, руководитель отдела иммунологии и межклеточных взаимодействий.

Санкт-Петербург.


Список литературы

1. Aandahl E.M., Torgersen K.M.,Tasken K. CD8+ regulatory T cells – а distinct T-cell lineage or a transient T-cell phenotype? Hum. Immunol., 2008, Vol. 69, no. 11, pp. 696-699.

2. Aboagye-Mathiesen G., Toth F.D., Petersen P.M., Gildberg A., Norskov-Lauritsen N., Zachar V., Ebbesen P. Differential interferon production in human first and third trimester trophoblast cultures stimulated with viruses. Placenta, 1993, Vol. 14, no. 2, pp. 225-234.

3. Aboagye-Mathiesen G., Toth F.D., Zdravkovic M., Ebbesen P. Production of interferons in human placental trophoblast subpopulations and their possible roles in pregnancy. Clin. Diagn. Lab. Immunol., 1994, Vol. 1, no. 6, pp. 650-659.

4. E.H., Faust D. Rejection quantity in kidney transplant recipients is associated with increasing intracellular interleukin-2 in CD8+ T-cells. Transpl. Immunol., 2014, Vol. 31, no. 1, pp. 17-21.

5. Arck P.C. Stress and pregnancy loss: role of immune mediators, hormones and neurotransmitters. Am. J. Reprod. Immunol., 2001, Vol. 46, no. 2, pp. 117-123.

6. Arruvito L., Payaslian F., Baz P., Podhorzer A., Billordo A., Pandolfi J., Semeniuk G., Arribalzaga E., Fainboim L. Identification and clinical relevance of naturally occurring human CD8+HLA-DR+ regulatory T cells. J. Immunol., 2014, Vol. 193, no. 9, pp. 4469-4476.

7. Bachmann M.F., Wolint P., Walton S., Schwarz K., Oxenius A. Differential role of IL-2R signaling for CD8+T cell responses in acute and chronic viral infections. Eur. J. Immunol., 2007, Vol. 37, no. 6, pp. 1502-1512.

8. Badovinac V.P., Porter B.B., Harty J.T. Programmed contraction of CD8(+) T cells after infection. Nat. Immunol., 2002, Vol. 3, no. 7, pp. 619-626

9. Bao Y.S., Wang M., Zhang P., Zhou Z., Zhai W.J., Wang H., Jiang E.L., Huang Y., Feng S.Z., Han M.Z. Regulation of immunological balance between TH1/TH2 and Tc1/Tc2 lymphocytes by prostaglandin E2. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2010, Vol. 18, no. 2, pp. 431-435.

10. Barinov A., Galgano A., Krenn G., Tanchot C., Vasseur F., Rocha B. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response. PLoS ONE, 2017, Vol. 12, no. 7, e0180644. doi: 10.1371/journal.pone.0180644.

11. Barnea E.R., Hayrabedyan S., Todorova K., Almogi-Hazan O., Or R., Guingab J., McElhinney J., Fernandez N., Barder T. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins. Immunobiology, 2016, Vol. 221, no. 7, pp. 778-793.

12. Beneventi F., Locatelli E., de Amici M., Martinetti M., Spinillo A. Soluble HLA-G concentrations in obese women during pregnancy and in cord blood. J. Reprod. Immunol., 2017, Vol. 119, pp. 31-37.

13. Blechschmidt K., Mylonas I., Mayr D., Schiessl B., Schulze S., Becker K.F., Jeschke U. Expression of E-cadherin and its repressor snail in placental tissue of normal, preeclamptic and HELLP pregnancies. Virchows Arch., 2007, Vol. 450, no. 2, pp. 195-202.

14. Capece T., Kim M. The role of lymphatic niches in T cell differentiation. Mol. Cells, 2016, Vol. 39, no. 7, pp. 515-523.

15. Carvalheiro H., Duarte C., Silva-Cardoso S., da Silva J.A., Souto-Carneiro M.M. CD8+ T cell profiles in patients with rheumatoid arthritis and their relationship to disease activity. Arthritis Rheumatol., 2015, Vol. 67, no. 2, pp. 363-371.

16. Chandran P.A., Keller A., Weinmann L., Seida A.A., Braun M., Andreev K., Fischer B., Horn E., Schwinn S., Junker M., Houben R., Dombrowski Y., Dietl J., Finotto S., Wolfl M., Meister G., Wischhusen J. The TGF-betainducible miR-23a cluster attenuates IFN-gamma levels and antigen-specific cytotoxicity in human CD8(+) T cells. J. Leukoc. Biol., 2014, Vol. 96, no. 4, pp. 633-645.

17. Clark D.A., Chaouat G., Wong K., Gorczynski R.M., Kinsky R. Tolerance mechanisms in pregnancy: a reappraisal of the role of class I paternal MHC antigens. Am. J. Reprod. Immunol., 2010, Vol. 63, no. 2, pp. 93-103.

18. Contini P., Ghio M., Merlo A., Poggi A., Indiveri F., Puppo F. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J. Immunol., 2005, Vol. 175, no. 11, pp. 7244-7254.

19. Coulomb-L’Hermine A., Larousserie F., Pflanz S., Bardel E., Kastelein R.A., Devergne O. Expression of interleukin-27 by human trophoblas T cells. Placenta, 2007, Vol. 28, no. 11-12, pp. 1133-1140.

20. Crespo A.C., van der Zwan A., Ramalho-Santos J., Strominger J.L., Tilburgs T. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections. J. Reprod. Immunol., 2017, Vol. 119, pp. 85-90.

21. Curtsinger J.M., Agarwal P., Lins D.C., Mescher M.F. Autocrine IFN-gamma promotes naïve CD8 T cell differentiation and synergizes with IFN-alpha to stimulate strong function. J. Immunol., 2012, Vol. 189, no. 2, pp. 659-668.

22. Curtsinger J.M., Gerner M.Y., Lins D.C., Mescher M.F. Signal 3 availability limits the CD8 T cell response to a solid tumor. J. Immunol., 2007, Vol. 178, no. 11, pp. 6752-6760.

23. Curtsinger J.M., Mescher M.F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol., 2010, Vol. 22, no. 3, pp. 333-340.

24. Darmochwal-Kolarz D., Sobczak E., Pozarowski P., Kolarz B., Rolinski J., Oleszczuk J. T CD3+CD8+lymphocytes are more susceptible for apoptosis in the first trimester of normal human pregnancy. J. Immunol. Res., 2014, Vol. 2014, 670524б 9 p. doi: 10.1155/2014/670524.

25. Dauven D., Ehrentraut S., Langwisch S., Zenclussen A.C., Schumacher A. Immune modulatory effects of human chorionic gonadotropin on dendritic cells supporting fetal survival in murine pregnancy. Front. Endocrinol. (Lausanne), 2016, Vol. 7, p. 146.

26. Deets K.A., Berkley A.M., Bergsbaken T., Fink P.J. Cutting еdge: Enhanced clonal burst size corrects an otherwise defective memory response by CD8+ recent thymic emigrants. J. Immunol., 2016, Vol. 196, no. 6, pp. 2450-2455.

27. Denison F.C., Kelly R.W., Calder A.A., Riley S.C. Cytokine secretion by human fetal membranes, decidua and placenta at term. Hum. Reprod., 1998, Vol. 13, no. 12, pp. 3560-3565.

28. Dong S., Kurtis J.D., Pond-Tor S., Kabyemela E., Duffy P.E., Fried M. CXC ligand 9 response to malaria during pregnancy is associated with low-birth-weight deliveries. Infect. Immun., 2012, Vol. 80, no. 9, pp. 3034-3038.

29. Du M.R., Wang S.C., Li D.J. The integrative roles of chemokines at the maternal-fetal interface in early pregnancy. Cell. Mol. Immunol., 2014, Vol. 11, no. 5, pp. 438-448.

30. Ebina Y., Shimada S., Deguchi M., Maesawa Y., Iijima N.,Yamada H. Divergence of helper, cytotoxic, and regulatory T cells in the decidua from miscarriage. Am. J. Reprod. Immunol., 2016, Vol. 76, no. 3, pp. 199-204.

31. Ellis S.D., McGovern J.L., van Maurik A., Howe D., Ehrenstein M.R., Notley C.A. Induced CD8+FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor alpha and CD86. Arthritis Rheumatol., 2014, Vol. 66, no. 10, pp. 2694-2705.

32. Erden O., Imir A., Guvenal T., Muslehiddinoglu A., Arici S., Cetin M., Cetin A. Investigation of the effects of heparin and low molecular weight heparin on E-cadherin and laminin expression in rat pregnancy by immunohistochemistry. Hum. Reprod., 2006, Vol. 21, no. 11, pp. 3014-3018.

33. Erlebacher A. Immunology of the maternal-fetal interface. Annu. Rev. Immunol., 2013, Vol. 31, pp. 387-411.

34. Erlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol., 2013, Vol. 13, no. 1, pp. 23-33.

35. Erlebacher A., Vencato D., Price K.A., Zhang D., Glimcher L.H. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J. Clin. Invest., 2007, Vol. 117, no. 5, pp. 1399-1411.

36. Eusebio M., Kuna P., Kraszula L., Kupczyk M., Pietruczuk M. Allergy-related changes in levels of CD8+CD25+FoxP3(bright) Treg cells and FoxP3 mRNA expression in peripheral blood: the role of IL-10 or TGF-beta. J. Biol. Regul. Homeost. Agents, 2014, Vol. 28, no. 3, pp. 461-470.

37. Fang W.N., Shi M., Meng C.Y., Li D.D., Peng J.P. The Balance between conventional DCs and plasmacytoid DCs is pivotal for immunological tolerance during pregnancy in the mouse. Sci. Rep., 2016, Vol. 6, 26984. doi: 10.1038/srep26984.

38. Gavin M.A., Torgerson T.R., Houston E., DeRoos P., Ho W.Y., Stray-Pedersen A., Ocheltree E.L., Greenberg P.D., Ochs H.D., Rudensky A.Y. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA, 2006, Vol. 103, no. 17, pp. 6659-6664.

39. Goldberg M.V., Maris C.H., Hipkiss E.L., Flies A.S., Zhen L., Tuder R.M., Grosso J.F., Harris T.J., Getnet D., Whartenby K.A., Brockstedt D.G., Dubensky T.W., Jr., Chen L., Pardoll D.M., Drake C.G. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood, 2007, Vol. 110, no. 1, pp. 186-192.

40. Golubovskaya V., Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel), 2016, Vol. 8, no. 3.

41. Gomez-Lopez N., Olson D.M., Robertson S.A. Interleukin-6 controls uterine Th9 cells and CD8(+) T regulatory cells to accelerate parturition in mice. Immunol. Cell Biol., 2016, Vol. 94, no. 1, pp. 79-89.

42. Gringhuis S.I., Kaptein T.M., Wevers B.A., van der Vlist M., Klaver E.J., van Die I., Vriend L.E., de Jong M.A., Geijtenbeek T.B. Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGNdependent IL-27 production. Nat. Commun., 2014, Vol. 5, p. 5074.

43. Gu J., Lu L., Chen M., Xu L., Lan Q., Li Q., Liu Z., Chen G., Wang P., Wang X., Brand D., Olsen N., Zheng S.G. TGF-beta-induced CD4+Foxp3+ T cells attenuate acute graft-versus-host disease by suppressing expansion and killing of effector CD8+ cells. J. Immunol., 2014, Vol. 193, no. 7, pp. 3388-3397.

44. He Y., Chen S., Huang H., Chen Q. Association between decreased plasma levels of soluble human leukocyte antigen-G and severe pre-eclampsia. J. Perinat. Med., 2016, Vol. 44, no. 3, pp. 283-290.

45. Henson S.M., Lanna A., Riddell N.E., Franzese O., Macaulay R., Griffiths S.J., Puleston D.J., Watson A.S., Simon A.K., Tooze S.A., Akbar A.N. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J. Clin. Invest., 2014, Vol. 124, no. 9, pp. 4004-4016.

46. Hentschke M.R., Krauspenhar B., Guwzinski A., Caruso F.B., Silveira I.D., Antonello I.C., Gadonski G., Poli-de-Figueiredo C.E., da Costa B.E. PP040. Expression of RANTES (CCL5) in maternal plasma, fetal plasma and placenta in pre-eclampsia and normotensive controls. Pregnancy Hypertens, 2012, Vol. 2, no. 3, p. 263.

47. Holets L.M., Carletti M.Z., Kshirsagar S.K., Christenson L.K., Petroff M.G. Differentiation-induced posttranscriptional control of B7-H1 in human trophoblas T cells. Placenta, 2009, Vol. 30, no. 1, pp. 48-55.

48. Holets L.M., Hunt J.S., Petroff M.G. Trophoblast CD274 (B7-H1) is differentially expressed across gestation: influence of oxygen concentration. Biol. Reprod., 2006, Vol. 74, no. 2, pp. 352-358.

49. Hoyer S., Prommersberger S., Pfeiffer I.A., Schuler-Thurner B., Schuler G., Dorrie J., Schaft N. Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: It takes three to tango. Eur. J. Immunol., 2014, Vol. 44, no. 12, pp. 3543-3559.

50. Huang H., Hao S., Li F., Ye Z., Yang J., Xiang J. CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology, 2007, Vol. 120, no. 2, pp. 148-159.

51. Huang Y., Zhu X.Y., Du M.R., Li D.J. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J. Immunol., 2008, Vol. 180, no. 4, pp. 2367-2375.

52. Irtegun S., Tekin M.A., Alpayci R. Increased expression of E-cadherin, endothelin-1, and CD68 in preeclamptic placentas. Erciyes Medical Journal, 2016, Vol. 38, no. 4, pp. 149-152.

53. Ishii M., Hayakawa S., Suzuki M.K., Yoshino N., Honda M., Nishinarita S., Chishima F., Nagaishi M., Satoh K. Expression of functional chemokine receptors of human placental cells. Am. J. Reprod. Immunol., 2000, Vol. 44, no. 6, pp. 365-373.

54. Jebbawi F., Fayyad-Kazan H., Merimi M., Lewalle P., Verougstraete J.C., Leo O., Romero P., Burny A., Badran B., Martiat P., Rouas R. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes. J. Transl. Med., 2014, Vol. 12, p. 218.

55. Jenkinson S.E., Whawell S.A., Swales B.M., Corps E.M., Kilshaw P.J., Farthing P.M. The alphaE(CD103)beta7 integrin interacts with oral and skin keratinocytes in an E-cadherin-independent manner*. Immunology, 2011, Vol. 132, no. 2, pp. 188-196.

56. Jin H.T., Anderson A.C., Tan W.G., West E.E., Ha S.J., Araki K., Freeman G.J., Kuchroo V.K., Ahmed R. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA, 2010, Vol. 107, no. 33, pp. 14733-14738.

57. Joedicke J.J., Myers L., Carmody A.B., Messer R.J., Wajant H., Lang K.S., Lang P.A., Mak T.W., Hasenkrug K.J., Dittmer U. Activated CD8+ T cells induce expansion of Vbeta5+ regulatory T cells via TNFR2 signaling. J. Immunol., 2014, Vol. 193, no. 6, pp. 2952-2960.

58. Juch H., Blaschitz A., Dohr G., Hutter H. HLA class I expression in the human placenta. Wien. Med. Wochenschr., 2012, Vol. 162, no. 9-10, pp. 196-200.

59. Kaech S.M., Tan J.T., Wherry E.J., Konieczny B.T., Surh C.D., Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol., 2003, Vol. 4, no. 12, pp. 1191-1198.

60. Kalble F., Mai C., Wagner M., Schober L., Schaier M., Zeier M., Spratte J., Fluhr H., Steinborn A. Aberrant ICOS+ T cell differentiation in women with spontaneous preterm labor. Am. J. Reprod. Immunol., 2016, Vol. 76, no. 5, pp. 415-425.

61. Karjalainen M.K., Ojaniemi M., Haapalainen A.M., Mahlman M., Salminen A., Huusko J.M., Maatta T.A., Kaukola T., Anttonen J., Ulvila J., Haataja R., Teramo K., Kingsmore S.F., Palotie A., Muglia L.J., Ramet M., Hallman M. CXCR3 polymorphism and expression associate with spontaneous preterm birth. J. Immunol., 2015, Vol. 195, no. 5, pp. 2187-2198.

62. Kastenmuller W., Brandes M., Wang Z., Herz J., Egen J.G., Germain R.N. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity, 2013, Vol. 38, no. 3, pp. 502-513.

63. Kim C.J., Romero R., Chaemsaithong P., Kim J.S. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol., 2015, Vol. 213, no. 4, pp. S53-69.

64. Kim C.J., Romero R., Kusanovic J.P., Yoo W., Dong Z., Topping V., Gotsch F., Yoon B.H., Chi J.G., Kim J.S. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod. Pathol., 2010, Vol. 23, no. 7, pp. 1000-1011.

65. Kim M.T., Harty J.T. Impact of inflammatory cytokines on effector and memory CD8+ T cells. Front. Immunol., 2014, Vol. 5, p. 295.

66. Klitkou L., Dahl M., Hviid T.V., Djurisic S., Piosik Z.M., Skovbo P., Moller A.M., Steffensen R., Christiansen O.B. Human leukocyte antigen (HLA)-G during pregnancy part I: correlations between maternal soluble HLA-G at midterm, at term, and umbilical cord blood soluble HLA-G at term. Hum. Immunol., 2015, Vol. 76, no. 4, pp. 254-259.

67. Kondo T., Takata H., Matsuki F., Takiguchi M. Cutting edge: Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J. Immunol., 2009, Vol. 182, no. 4, pp. 1794-1798.

68. Kuttruff S., Koch S., Kelp A., Pawelec G., Rammensee H.G., Steinle A. NKp80 defines and stimulates a reactive subset of CD8 T cells. Blood, 2009, Vol. 113, no. 2, pp. 358-369.

69. Laidlaw B.J., Craft J.E., Kaech S.M. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat. Rev. Immunol., 2016, Vol. 16, no. 2, pp. 102-111.

70. Laidlaw B.J., Cui W., Amezquita R.A., Gray S.M., Guan T., Lu Y., Kobayashi Y., Flavell R.A., Kleinstein S.H., Craft J., Kaech S.M. Production of IL-10 by CD4(+) regulatory T cells during the resolution of infection promotes the maturation of memory CD8(+) T cells. Nat. Immunol., 2015, Vol. 16, no. 8, pp. 871-879.

71. le Bouteiller P. HLAG in human early pregnancy: Control of uterine immune cell activation and likely vascular remodeling. Biomed. J., 2015, no. 38, p. 3238.

72. le Bouteiller P., Pizzato N., Barakonyi A., Solier C. HLA-G, pre-eclampsia, immunity and vascular events. J. Reprod. Immunol., 2003, Vol. 59, no. 2, pp. 219-234.

73. Lee N., You S., Shin M.S., Lee W.W., Kang K.S., Kim S.H., Kim W.U., Homer R.J., Kang M.J., Montgomery R.R., Dela Cruz C.S., Shaw A.C., Lee P.J., Chupp G.L., Hwang D., Kang I. IL-6 receptor alpha defines effector memory CD8+ T cells producing Th2 cytokines and expanding in asthma. Am. J. Respir. Crit. Care Med., 2014, Vol. 190, no. 12, pp. 1383-1394.

74. Lerret N.M., Houlihan J.L., Kheradmand T., Pothoven K.L., Zhang Z.J., Luo X. Donor-specific CD8+Foxp3+ T cells protect skin allografts and facilitate induction of conventional CD4+ Foxp3+ regulatory T cells. Am. J. Transplant., 2012, Vol. 12, no. 9, pp. 2335-2347.

75. Li C., Lin Y., Gao C., Qi Z. Function of CD4(+) T cells in CD8(+) T cell mediated rejection. Zhonghua Yi Xue Za Zhi, 2014, Vol. 94, no. 34, pp. 2690-2694.

76. Li H., Wang W., Wang G., Hou Y., Xu F., Liu R., Wang F., Xue J., Hu T., Luan X. Interferon-gamma and tumor necrosis factor-alpha promote the ability of human placenta-derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4(+)interleukin-10(+) and CD8(+)interleukin-10(+)Treg subsets. Cytotherapy, 2015, Vol. 17, no. 11, pp. 1560-1571.

77. Li H.W., Cheung A.N., Tsao S.W., Cheung A.L., O W.S. Expression of e-cadherin and beta-catenin in trophoblastic tissue in normal and pathological pregnancies. Int. J. Gynecol. Pathol., 2003, Vol. 22, no. 1, pp. 63-70.

78. Li M., Piao L., Chen C.P., Wu X., Yeh C.C., Masch R., Chang C.C., Huang S.J. Modulation of decidual macrophage polarization by macrophage colony-stimulating factor derived from first-trimester decidual cells: implication in preeclampsia. Am. J. Pathol., 2016, Vol. 186, no. 5, pp. 1258-1266.

79. Li M., Sun X., Kuang X., Liao Y., Li H., Luo D. Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2,3-dioxygenase and transforming growth factor-beta. Clin. Exp. Immunol., 2014, Vol. 178, no. 3, pp. 516-524.

80. Li X.L., Dong X., Xue Y., Li C.F., Gou W.L., Chen Q. Increased expression levels of E-cadherin, cytokeratin 18 and 19 observed in preeclampsia were not correlated with disease severity. Placenta, 2014, Vol. 35, no. 8, pp. 625-631.

81. Liu D., Burd E.M., Coopersmith C.M., Ford M.L. Retrogenic ICOS expression increases differentiation of KLRG-1hiCD127loCD8+ T cells during listeria infection and diminishes recall responses. J. Immunol., 2016, Vol. 196, no. 3, pp. 1000-1012.

82. Liu S.J., Tsai J.P., Shen C.R., Sher Y.P., Hsieh C.L., Yeh Y.C., Chou A.H., Chang S.R., Hsiao K.N., Yu F.W., Chen H.W. Induction of a distinct CD8 Tnc17 subset by transforming growth factor-beta and interleukin-6. J. Leukoc. Biol., 2007, Vol. 82, no. 2, pp. 354-360.

83. Liu Y., Lan Q., Lu L., Chen M., Xia Z., Ma J., Wang J., Fan H., Shen Y., Ryffel B., Brand D., Quismorio F., Liu Z., Horwitz D.A., Xu A., Zheng S.G. Phenotypic and functional characteristic of a newly identified CD8+ Foxp3-CD103+ regulatory T cells. J. Mol. Cell. Biol., 2014, Vol. 6, no. 1, pp. 81-92.

84. Marozio L., Garofalo A., Berchialla P., Tavella A.M., Salton L., Cavallo F., Benedetto C. Low expression of soluble human leukocyte antigen G in early gestation and subsequent placenta-mediated complications of pregnancy. J. Obstet. Gynaecol. Res., 2017, Vol. 43, no. 9, pp. 1391-1396.

85. Mas A.E., Petitbarat M., Dubanchet S., Fay S., Ledee N., Chaouat G. Immune regulation at the interface during early steps of murine implantation: involvement of two new cytokines of the IL-12 family (IL-23 and IL-27) and of TWEAK. Am. J. Reprod. Immunol., 2008, Vol. 59, no. 4, pp. 323-338.

86. McLane L.M., Banerjee P.P., Cosma G.L., Makedonas G., Wherry E.J., Orange J.S., Betts M.R. Differential localization of T-bet and Eomes in CD8 T cell memory populations. J. Immunol., 2013, Vol. 190, no. 7, pp. 3207-3215.

87. Mescher M.F., Curtsinger J.M., Agarwal P., Casey K.A., Gerner M., Hammerbeck C.D., Popescu F., Xiao Z. Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev., 2006, Vol. 211, pp. 81-92.

88. Michimata T., Tsuda H., Sakai M., Fujimura M., Nagata K., Nakamura M., Saito S. Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D(2)-mediated manner. Mol. Hum. Reprod., 2002, Vol. 8, no. 2, pp. 181-187.

89. Mosmann T.R., Li L., Sad S. Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin. Immunol., 1997, Vol. 9, no. 2, pp. 87-92.

90. Nagamatsu T., Barrier B.F., Schust D.J. The regulation of T-cell cytokine production by ICOS-B7H2 interactions at the human fetomaternal interface. Immunol. Cell Biol., 2011, Vol. 89, no. 3, pp. 417-425.

91. Nakagawa T., Tsuruoka M., Ogura H., Okuyama Y., Arima Y., Hirano T., Murakami M. IL-6 positively regulates Foxp3+CD8+ T cells in vivo. Int. Immunol., 2010, Vol. 22, no. 2, pp. 129-139.

92. Nancy P., Erlebacher A. T cell behavior at the maternal-fetal interface. Int. J. Dev. Biol., 2014, Vol. 58, no. 2-4, pp. 189-198.

93. Novais F.O., Carvalho A.M., Clark M.L., Carvalho L.P., Beiting D.P., Brodsky I.E., Carvalho E.M., Scott P. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production. PLoS Pathog., 2017, Vol. 13, no. 2, e1006196. doi: 10.1371/journal.ppat.1006196.

94. O’Sullivan S., Cormican L., Faul J.L., Ichinohe S., Johnston S.L., Burke C.M., Poulter L.W. Activated, cytotoxic CD8(+) T lymphocytes contribute to the pathology of asthma death. Am. J. Respir. Crit. Care Med., 2001, Vol. 164, no. 4, pp. 560-564.

95. Okada S., Okada H., Sanezumi M., Nakajima T., Yasuda K., Kanzaki H. Expression of interleukin-15 in human endometrium and decidua. Mol. Hum. Reprod., 2000, Vol. 6, no. 1, pp. 75-80.

96. Osman I., Young A., Ledingham M.A., Thomson A.J., Jordan F., Greer I.A., Norman J.E. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol. Hum. Reprod., 2003, Vol. 9, no. 1, pp. 41-45.

97. Ouellette M.J., St-Jacques S., Lambert R.D. CD8 membrane expression is down-regulated by transforming growth factor (TGF)-beta 1, TGF-beta 2, and prostaglandin E2. Am. J. Reprod. Immunol., 1999, Vol. 41, no. 3, pp. 183-191.

98. Paparini D., Gori S., Grasso E., Scordo W., Calo G., Perez Leiros C., Ramhorst R., Salamone G. Acetylcholine contributes to control the physiological inflammatory response during the peri-implantation period. Acta Physiol. (Oxf.), 2015, Vol. 214, no. 2, pp. 237-247.

99. Penaloza-MacMaster P. CD8 T-cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology, 2017, Vol. 151, no. 2, pp. 146-153.

100. Peterson S.E., Nelson J.L., Gadi V.K., Gammill H.S. Fetal cellular microchimerism in miscarriage and pregnancy termination. Chimerism, 2013, Vol. 4, no. 4, pp. 136-138.

101. Pitman H., Innes B.A., Robson S.C., Bulmer J.N., Lash G.E. Altered expression of interleukin-6, interleukin-8 and their receptors in decidua of women with sporadic miscarriage. Hum. Reprod., 2013, Vol. 28, no. 8, pp. 2075-2086.

102. Prins J.R., van der Hoorn M.L., Keijser R., Ris-Stalpers C., van Beelen E., Afink G.B., Claas F.H., van der Post J.A., Scherjon S.A. Higher decidual EBI3 and HLA-G mRNA expression in preeclampsia: Cause or consequence of preeclampsia. Hum. Immunol., 2016, Vol. 77, no. 1, pp. 68-70.

103. Puppo F., Contini P., Ghio M., Brenci S., Scudeletti M., Filaci G., Ferrone S., Indiveri F. Soluble human MHC class I molecules induce soluble Fas ligand secretion and trigger apoptosis in activated CD8(+) Fas (CD95)(+) T lymphocytes. Int. Immunol., 2000, Vol. 12, no. 2, pp. 195-203.

104. Raman K., Wang H., Troncone M.J., Khan W.I., Pare G., Terry J. Overlap chronic placental inflammation is associated with a unique gene expression pattern. PLoS ONE, 2015, Vol. 10, no. 7, e0133738. doi: 10.1371/journal.pone.0133738.

105. Reeves E., James E. Tumour and placenta establishment: The importance of antigen processing and presentation. Placenta, 2017, Vol. 56, pp. 34-39.

106. Remoli M.E., Gafa V., Giacomini E., Severa M., Lande R., Coccia E.M. IFN-beta modulates the response to TLR stimulation in human DC: involvement of IFN regulatory factor-1 (IRF-1) in IL-27 gene expression. Eur. J. Immunol., 2007, Vol. 37, no. 12, pp. 3499-3508.

107. Rijnink E.C., Penning M.E., Wolterbeek R., Wilhelmus S., Zandbergen M., van Duinen S.G., Schutte J., Bruijn J.A., Bajema I.M. Tissue microchimerism is increased during pregnancy: a human autopsy study. Mol. Hum. Reprod., 2015, Vol. 21, no. 11, pp. 857-864.

108. Ryu S.J., Jung K.M., Yoo H.S., Kim T.W., Kim S., Chang J., Choi E.Y. Cognate CD4 help is essential for the reactivation and expansion of CD8 memory T cells directed against the hematopoietic cell-specific dominant minor histocompatibility antigen, H60. Blood, 2009, Vol. 113, no. 18, pp. 4273-4280.

109. Sad S., Li L., Mosmann T.R. Cytokine-deficient CD8+ Tc1 cells induced by IL-4: retained inflammation and perforin and Fas cytotoxicity but compromised long term killing of tumor cells. J. Immunol., 1997, Vol. 159, no. 2, pp. 606-613.

110. Sad S., Mosmann T.R. Interleukin (IL) 4, in the absence of antigen stimulation, induces an anergy-like state in differentiated CD8+ TC1 cells: loss of IL-2 synthesis and autonomous proliferation but retention of cytotoxicity and synthesis of other cytokines. J. Exp. Med., 1995, Vol. 182, no. 5, pp. 1505-1515.

111. San Segundo D., Ballesteros M.A., Naranjo S., Zurbano F., Minambres E., Lopez-Hoyos M. Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients. PLoS ONE, 2013, Vol. 8, no. 11, e80601. doi: 10.1371/journal.pone.0080601.

112. Sandau M.M., Kohlmeier J.E., Woodland D.L., Jameson S.C. IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. J. Immunol., 2010, Vol. 184, no. 1, pp. 35-44.

113. Scaife P.J., Bulmer J.N., Robson S.C., Innes B.A., Searle R.F. Effector activity of decidual CD8+ T lymphocytes in early human pregnancy. Biol. Reprod., 2006, Vol. 75, no. 4, pp. 562-567.

114. Schettini J.A.C., Gomes T.V., Santos Barreto A.K., da Silva Junior C.D., da Matta M., Coutinho I.C.N., de Oliveira M., Torres L.C. High Levels of CXCL8 and low levels of CXCL9 and CXCL10 in women with maternal RhD alloimmunization. Front. Immunol., 2017, Vol. 8, p. 700.

115. Schliefsteiner C., Peinhaupt M., Kopp S., Logl J., Lang-Olip I., Hiden U., Heinemann A., Desoye G., Wadsack C. Human placental hofbauer cells maintain an anti-inflammatory M2 phenotype despite the presence of gestational diabetes mellitus. Front. Immunol., 2017, Vol. 8, p. 888.

116. Schneider R., Yaneva T., Beauseigle D., El-Khoury L., Arbour N. IL-27 increases the proliferation and effector functions of human naïve CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur. J. Immunol., 2011, Vol. 41, no. 1, pp. 47-59.

117. Schumacher A., Costa S.D., Zenclussen A.C. Endocrine factors modulating immune responses in pregnancy. Front. Immunol., 2014, Vol. 5, p. 196.

118. Shao L., Jacobs A.R., Johnson V.V., Mayer L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol., 2005, Vol. 174, no. 12, pp. 7539-7547.

119. Shobeiri S.S., Abediankenari S., Lashtoo-Aghaee B., Rahmani Z., Esmaeili-Gorji B. Evaluation of soluble human leukocyte antigen-G in peripheral blood of pregnant women with gestational diabetes mellitus. Caspian J. Intern. Med., 2016, Vol. 7, no. 3, pp. 178-182.

120. Sokolov D.I., Stepanova O.I., Selkov S.I. The role of the different subpopulations of CD4+Т lymphocytes during pregnancy. Medical Immunology (Russia), 2016, Vol. 18, no. 6, pp. 521-536.

121. Soni C., Karande A.A. Glycodelin-A interferes with IL-2/IL-2R signalling to induce cell growth arrest, loss of effector functions and apoptosis in T-lymphocytes. Hum. Reprod., 2012, Vol. 27, no. 4, pp. 1005-1015.

122. Soni C., Karande A.A. Glycodelin A suppresses the cytolytic activity of CD8+ T lymphocytes. Mol. Immunol., 2010, Vol. 47, no. 15, pp. 2458-2466.

123. Steinert E.M., Schenkel J.M., Fraser K.A., Beura L.K., Manlove L.S., Igyarto B.Z., Southern P.J., Masopust D. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell, 2015, Vol. 161, no. 4, pp. 737-749

124. Sundar Raj S., Soni C., Karande A.A. Glycodelin A triggers T cell apoptosis through a novel calciumindependent galactose-binding lectin activity. Mol. Immunol., 2009, Vol. 46, no. 16, pp. 3411-3419.

125. Swanson P.A. 2nd, Hart G.T., Russo M.V., Nayak D., Yazew T., Pena M., Khan S.M., Janse C.J., Pierce S.K., McGavern D.B. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature. PLoS Pathog., 2016, Vol. 12, no. 12, e1006022. doi: 10.1371/journal.ppat.1006022.

126. Thomas D.A., Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell, 2005, Vol. 8, no. 5, pp. 369-380.

127. Thompson A.W., Lotze M.T. The cytokine handbook. Gulf Professional Publishing, 2003. 1572 p.

128. Tilburgs T., Scherjon S.A., Roelen D.L., Claas F.H. Decidual CD8+CD28- T cells express CD103 but not perforin. Hum. Immunol., 2009, Vol. 70, no. 2, pp. 96-100.

129. Tilburgs T., Schonkeren D., Eikmans M., Nagtzaam N.M., Datema G., Swings G.M., Prins F., van Lith J.M., van der Mast B.J., Roelen D.L., Scherjon S.A., Claas F.H. Human decidual tissue contains differentiated CD8+ effector-memory T cells with unique properties. J. Immunol., 2010, Vol. 185, no. 7, pp. 4470-4477.

130. Tilburgs T., Strominger J.L. CD8+ effector T cells at the fetal-maternal interface, balancing fetal tolerance and antiviral immunity. Am. J. Reprod. Immunol., 2013, Vol. 69, no. 4, pp. 395-407.

131. Tilburgs T., van der Mast B.J., Nagtzaam N.M., Roelen D.L., Scherjon S.A., Claas F.H. Expression of NK cell receptors on decidual T cells in human pregnancy. J. Reprod. Immunol., 2009, Vol. 80, no. 1-2, pp. 22-32.

132. Tsunoda I., Kuang L.Q., Kobayashi-Warren M., Fujinami R.S. Central nervous system pathology caused by autoreactive CD8+ T-cell clones following virus infection. J. Virol., 2005, Vol. 79, no. 23, pp. 14640-14646.

133. van Egmond A., van der Keur C., Swings G.M., Scherjon S.A., Claas F.H. The possible role of virus-specific CD8(+) memory T cells in decidual tissue. J. Reprod. Immunol., 2016, Vol. 113, pp. 1-8.

134. van Panhuys N. Studying dendritic cell – T cell interactions under in vivo conditions. Methods Mol. Biol., 2017, Vol. 1584, pp. 569-583.

135. Vasquez J.C., Huttner A., Zhang L., Marks A., Chan A., Baehring J.M., Kahle K.T., Dhodapkar K.M. SOX2 immunity and tissue resident memory in children and young adults with glioma. J. Neurooncol., 2017, Vol. 134, no. 1, pp. 41-53.

136. Veras E., Kurman R.J., Wang T.L., Shih I.M. PD-L1 Expression in human placentas and gestational trophoblastic diseases. Int. J. Gynecol. Pathol., 2017, Vol. 36, no. 2, pp. 146-153.

137. Vukmanovic-Stejic M., Vyas B., Gorak-Stolinska P., Noble A., Kemeny D.M. Human Tc1 and Tc2/Tc0 CD8 T-cell clones display distincT cell surface and functional phenotypes. Blood, 2000, Vol. 95, no. 1, pp. 231-240.

138. Wang H., He M., Hou Y., Chen S., Zhang X., Zhang M., Ji X. Role of decidual CD14(+) macrophages in the homeostasis of maternal-fetal interface and the differentiation capacity of the cells during pregnancy and parturition. Placenta, 2016, Vol. 38, pp. 76-83.

139. Wang S.C., Li Y.H., Piao H.L., Hong X.W., Zhang D., Xu Y.Y., Tao Y., Wang Y., Yuan M.M., Li D.J., Du M.R. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy. Cell Death Dis., 2015, Vol. 6, e1738. doi: 10.1038/cddis.2015.112.

140. Wang W.J., Liu F.J., Qu H.M., Hao C.F., Qu Q.L., Xiong W., Bao H.C., Wang X.R. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J. Reprod. Immunol., 2013, Vol. 99, no. 1-2, pp. 39-45.

141. White H.D., Crassi K.M., Givan A.L., Stern J.E., Gonzalez J.L., Memoli V.A., Green W.R., Wira C.R. CD3+CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. J. Immunol., 1997, Vol. 158, no. 6, pp. 3017-3027.

142. Wikenheiser D.J., Stumhofer J.S. ICOS co-stimulation: friend or foe? Front. Immunol., 2016, Vol. 7, p. 304. 143. Wilczynski J.R., Kalinka J., Radwan M. The role of T-regulatory cells in pregnancy and cancer. Front. Biosci., 2008, Vol. 13, pp. 2275-2289.

143. Williams P.J., Searle R.F., Robson S.C., Innes B.A., Bulmer J.N. Decidual leucocyte populations in early to late gestation normal human pregnancy. J. Reprod. Immunol., 2009, Vol. 82, no. 1, pp. 24-31.

144. Wu Q., Gardiner G.J., Berry E., Wagner S.R., Lu T., Clay B.S., Moore T.V., Ferreira C.M., Williams J.W., Luster A.D., Medoff B.D., Cannon J.L., Sperling A.I., Shilling R.A. ICOS-expressing lymphocytes promote resolution of CD8-mediated lung injury in a mouse model of lung rejection. PLoS ONE, 2013, Vol. 8, no. 8, e72955. doi: 10.1371/journal.pone.0072955.

145. Xiao Z., Casey K.A., Jameson S.C., Curtsinger J.M., Mescher M.F. Programming for CD8 T cell memory development requires IL-12 or type I IFN. J. Immunol., 2009, Vol. 182, no. 5, pp. 2786-2794.

146. Xin L., Ertelt J.M., Rowe J.H., Jiang T.T., Kinder J.M., Chaturvedi V., Elahi S., Way S.S. Cutting edge: committed Th1 CD4+ T cell differentiation blocks pregnancy-induced Foxp3 expression with antigen-specific fetal loss. J. Immunol., 2014, Vol. 192, no. 7, pp. 2970-2974.

147. Xu Y.Y., Wang S.C., Lin Y.K., Li D.J., Du M.R. Tim-3 and PD-1 regulate CD8+ T cell function to maintain early pregnancy in mice. J. Reprod. Dev., 2017, Vol. 63, no. 3, pp. 289-294.

148. Yang J., Zhang P., Krishna S., Wang J., Lin X., Huang H., Xie D., Gorentla B., Huang R., Gao J., Li Q.J., Zhong X.P. Unexpected positive control of NFkappaB and miR-155 by DGKalpha and zeta ensures effector and memory CD8+ T cell differentiation. Oncotarget, 2016, Vol. 7, no. 23, pp. 33744-33764.

149. Yap M., Boeffard F., Clave E., Pallier A., Danger R., Giral M., Dantal J., Foucher Y., Guillot-Gueguen C., Toubert A., Soulillou J.P., Brouard S., Degauque N. Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction. J. Am. Soc. Nephrol., 2014, Vol. 25, no. 8, pp. 1856-1868.

150. Yu J., Qian L., Wu F., Li M., Chen W., Wang H. Decreased frequency of peripheral blood CD8+CD25+FoxP3+regulatory T cells correlates with IL-33 levels in pre-eclampsia. Hypertens Pregnancy, 2017, Vol. 36, no. 2, pp. 217-225.

151. Yu X.Z., Liang Y., Nurieva R.I., Guo F., Anasetti C., Dong C. Opposing effects of ICOS on graft-versus-host disease mediated by CD4 and CD8 T cells. J. Immunol., 2006, Vol. 176, no. 12, pp. 7394-7401.

152. Zhang X.H., Liang X., Liang X.H., Wang T.S., Qi Q.R., Deng W.B., Sha A.G., Yang Z.M. The mesenchymalepithelial transition during in vitro decidualization. Reprod. Sci., 2013, Vol. 20, no. 4, pp. 354-360.


Для цитирования:


Степанова О.И., Баженов Д.О., Хохлова E.В., Коган И.Ю., Соколов Д.И., Сельков С.А. РОЛЬ РАЗЛИЧНЫХ СУБПОПУЛЯЦИЙ CD8+Т-ЛИМФОЦИТОВ ПРИ БЕРЕМЕННОСТИ. Медицинская иммунология. 2018;20(5):621-638. https://doi.org/10.15789/1563-0625-2018-5-621-638

For citation:


Stepanova O.I., Bazhenov D.O., Khokhlova E.V., Kogan I.Y., Sokolov D.I., Selkov S.A. THE ROLE OF SUBPOPULATIONS OF CD8+ T LYMPHOCYTES IN THE DEVELOPMENT OF PREGNANCY. Medical Immunology (Russia). 2018;20(5):621-638. (In Russ.) https://doi.org/10.15789/1563-0625-2018-5-621-638

Просмотров: 222


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)