IMMUNOLOGICAL MEMORY: THE ROLE OF REGULATORY CELLS (TREGS)
https://doi.org/10.15789/1563-0625-2018-5-613-620
Abstract
Memory T cells are necessary for development of the immune response and represent one of the most numerous population of human T lymphocytes. On the contrary, suppressive regulatory T cells (Tregs) may terminate the immune response and help to maintain tolerance to self-antigens. These important groups of cells are consisting of different subpopulations and retaining throughout life. However, today there is yet no clear understanding of how the relations between these two groups of cells are formed. In this work we consider possible ways of development and maintenance of CD4+ T cell memory and role of Tregs in these processes. Mechanisms of a differentiation of memory T cells, Tregs and recently described memory Tregs are discussed. The functional and genetic characteristics of these cells are compared. Division of cells according to the functional profile allows drawing parallels between memory T cells and Tregs. These two groups are consisted of central circulating populations (Tc), effector which can migrate toward specific tissues (Te) and tissue-resident cells (Tr), which are staying in peripheral tissues. The similar structural organization of Tregs and memory T cells, existence of transitional forms of tissue-resident Treg subpopulations with properties of memory cells assumes existence of close interrelation between these groups of lymphocytes. The conversion of CD4+ memory T cells into FoxP3-expressing Tregs is one of possible mechanisms of communication between these two groups. The memory Treg-cells with T cell and memory Treg-cell properties can represent a transitional stage of differentiation. On the other side, Treg cells can differentiate independently of memory T cells and accumulate during life in the form of memory Treg cells. The supressor function of Tregs is also necessary as well as function of memory T cells to develop the immune response. It is possible, that a subset of Treg cells undergoes selection in thymus and constitutively express TCR-receptors having affinity with peripheral tissues. Further, these committed cells can be settled into tissues and become tissue-resident Treg cells which maintain regional T cell memory. Tregs can represent the “mirror image” of the structural organization of memory T cells, but with the return sign – the sign of suppression. The quantitative ratio of Tregs and memory T cells (CD4+CD45RO+CD25hiFoxP3+/CD4+CD45RO+CD25-FoxP3-), perhaps, is important criterion for functional assessment of immune system. The balance between these functionally opposite cell subsets has to provide stable functioning of immune system.
About the Authors
E. K. OleinikRussian Federation
PhD, MD (Biology), Associate Professor, Senior Research Associate, Head, Immunology Group.
185910, Russian Federation, Republic of Karelia, Petrozavodsk, Pushkinskaya str., 11.
A. V. Churov
Russian Federation
PhD (Biology), Research Associate, Immunology Group.
Petrozavodsk.V. M. Oleinik
Russian Federation
PhD, MD (Biology), Leading Research Associate, Immunology Group.
Petrozavodsk.References
1. Araki K., Turner A.P., Shaffer V.O., Gangappa S., Keller S.A., Bachman M.F., Larsen C.P., Ahmed R. mTOR regulates memory CD8 T‑cell differentiation. Nature, 2009, Vol. 460, no. 7251, pp. 108-112.
2. Baecher-Allan C., Brown J.A., Freeman G.J., Hafler D.A. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol., 2001, Vol. 167, no. 3, pp. 1245-1253.
3. Banerjee A., Gordon S.M., Intlekofer A.M., Paley M.A., Mooney E.C., Lindsten T., Wherry E.J., Reiner S.L. Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche. J. Immunol., 2010, Vol. 185, no. 9, pp. 4988-4992.
4. Booth N.J., McQuaid A.J., Sobande T., Kissane S., Agius E., Jackson S.E., Salmon M., Falciani F., Yong K., Rustin M.H., Akbar A.N., Vukmanovic-Stejic M. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J. Immunol., 2010, Vol. 184, no. 8, pp. 4317-4326.
5. Brincks E.L., Roberts A.D., Cookenham T., Sell S., Kohlmeier J.E., Blackman M.A., Woodland D.L. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J. Immunol., 2013, Vol. 190, no. 7, pp. 3438-3446.
6. Burzyn D., Benoist, C., Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol., 2013, Vol. 14, no. 10, pp. 1007-1013.
7. Cebula A., Rempala G.A., Pabla S.S., Mclndoe R.A., Denning T.L., Bry L., Kray P., Kisielow P., Ignatovicz L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, Vol. 497, no. 7448, pp. 258-262.
8. Chang J.T., Wherry E.J., Goldrath A.W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol., 2014, Vol. 15, no. 12, pp. 1104-1115.
9. Coe D.J., Kishore M., Marelli-Berg F. Metabolic regulation of regulatory T cell development and function. Front. Immunol., 2014, Vol. 5, no. 590, pp. 1-6.
10. Cretney E., Xin A., Shi W., Minnich M., Masson F., Miasari M., Belz G.T., Smyth G.K., Busslinger M., Nutt S.L., Kallies A. The transcription factors BLIMP1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol., 2011, Vol. 12, no. 4, pp. 304-311.
11. den Braber I., Mugwagwa T., Vrisekoop N., Westera L., Mogling R., de Boer A.B., Willems N., Schrijver E.H.R., Spierenburg G., Gaiser K., Mul E., Otto S.A., Ruiter An F.C., Ackermans M.T., Miedema F., José A.M. Borghans J.A.M., de Boer R.J., Tesselaar K. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity, 2012, Vol. 36, no. 2, pp. 288-297.
12. den Braber I., Mugwagwa T., Vrisekoop N., Westera L., Mogling R., de Boer A.B., Willems N., Schrijver E.H.R., Spierenburg G., Gaiser K., Mul E., Otto S.A., Ruiter An F.C., Ackermans M.T., Miedema F., José A.M. Borghans J.A.M., de Boer R.J., Tesselaar K., Goronzy J.J., Weyand C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol., 2013, Vol. 14, no. 5, pp. 428-436.
13. Dong S., Maiella S., Xhaard A., Pang Y., Wenandy L., Larghero J., Becavin C., Benecke A., Bianchi E., Socie G., Rogge L. Multiparameter single-cell profiling of human CD4+FOXP3+ regulatory T‑cell populations in homeostatic conditions and during graft-versus-host disease. Blood, 2013, Vol. 122, no. 10, pp. 1802-1812.
14. Farber D.L., Yudanin N.A., Restifo N.P. Human memory T-cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol., 2014, Vol. 14, no. 1, pp. 24-35.
15. Farber D.L., Netea M.G., Radbruck A., Rajewsky K., Zinkernagel R.M. Immunological memory: lessons from the past and look to the future. Nat. Rev. Immol., 2016, Vol. 16, no. 2, pp. 125-128.
16. Gattinoni L., Lugli E., Ji Y., Pos Z., Paulos C.M., Quigley M.F., Almeida J.R., Gostick E., Yu Z., Carpenito C., Wang E., Douek D.C., Price D.A., June C.H., Marincola F.M., Roederer M., Restifo N.P. A human memory T-cell subset with stem cell-like properties. Nat. Med., 2011, Vol. 17, no. 10, pp. 1290-1297.
17. Gattinoni L., Klebanoff C.A., Restifo N.P. Path to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer, 2012, Vol. 12, no. 10, pp. 671-684.
18. Goronzy J.J., Weyand C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol., 2013, Vol. 14, no. 5, pp. 428-436.
19. Gratz I.K., Campbell D.J. Organ-specific and memory Treg cells: specificity, development, function, and maintenance. Front. Immunol., 2014, Vol. 5, p. 333.
20. Henson S.M., Riddell N.E., Akbar A.N. Properties of end-stage human T-cells defined by CD45RA re‑expression. Curr. Opin. Immunol., 2012, Vol. 24, no. 4, pp. 476-481.
21. Hori S., Haury M., Coutinho A., Demengeot J. Specificity requirements for selection and effector functions of CD25+4+regulatory T-cells in anti-myelin basic protein T-cell receptor transgenic mice. Proc. Natl. Acad. Sci. USA, 2002, Vol. 99, no. 12, pp. 8213-8218.
22. Katzman S.D., Hoyer K.K., Dooms H., Gratz I.K., Rosenblum M.D., Paw J.S., Isakson S.H., Abbas A.K. Opposing functions of IL‑2 and IL‑7 in the regulation of immune responses. Cytokine, 2011, Vol. 56, no. 1, pp. 116-121.
23. Lathrop S.K., Bloom S.M., Rao S.M., Nutsch K., Lio C-W., Santacruz N., Peterson D.A., Stappenbeck T.S., Hsieh C-S. Peripheral education of the immune system by colonic commensal microbiota. Nature, 2011, Vol. 478, no. 7368, pp. 250-254.
24. Li M.O., Rudensky A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol., 2016, Vol. 16, no. 4, pp. 220-233.
25. Liston A., Gray D.H. Homeostatic control of regulatory T-cell diversity. Nat. Rev. Immunol., 2014, Vol. 14, no. 3, pp. 154-165.
26. Loblay R.H., Pritchand-Briscoe H., Basten A. Suppressor T‑cell memory. Nature, 1978, Vol. 272, no. 5654, pp. 620-622.
27. Michalek R.D., Gerriets V.A., Jacobs S.R., Macintyre A.N., Maclver N.J., Mason E.F., Sullivan S.A., Nichols A.G., Rathmel J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, Vol. 186, no. 6, pp. 3299-3303.
28. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T., Ono M., Amoura Z., Gorochov G., Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FOXP3 transcription factor. Immunity, 2009, Vol. 30, no. 6, pp. 899-911.
29. Mueller S.N., Mackay L.K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol., 2016, Vol. 16, no. 2, pp. 79-89.
30. Ohkura N., Kitagawa Y., Sakaguchi S. Development and maintenance of regulatory T cells. Immunity, 2013, Vol. 38, no. 3, pp. 414-423.
31. Pearce E.L., Poffenberger M.C., Chang C.‑H., Jones R.G. Fueling immunity: insights into metabolism and lymphocyte function. Science, 2013, Vol. 342, no. 6155, 1242454. doi: 10.1126/science.1242454.
32. Pulko V., Davies J.S., Martinez C., Lanteri M.C., Busch M.P., Diamond M.S., Knox K., Bush E.C., Sims P.A., Sinari S., Billheimer D., Haddad E.K., Murray K.O., Wertheimer A.M., Nikolich-Žugich J. Human memory T-cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunology, 2016, Vol. 17, no. 8, pp. 966-975.
33. Raynor J., Lages C.S., Shehata H., Hildeman D., Chouqnet C.A. Homeostasis and function of regulatory T-cells in aging. Curr. Opin. Immunol., 2012, Vol. 24, no. 4, pp. 482-487.
34. Rosenblum M.D., Gratz I.K., Paw J.S., Lee K., Marshak-Rothstein A., Abbas A.K. Response to self antigen imprints regulatory memory in tissues. Nature, 2011, Vol. 480, no. 7378, pp. 538-542.
35. Rosenblum M.D., Way S.S., Abbas A.K. Regulatory T-cell memory. Nat. Rev. Immunol., 2016, Vol. 16, no. 2, pp. 90-101.
36. Rowe J.H., Ertelt J.M., Xin L., Way S.S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature, 2012, Vol. 490, no. 7418, pp. 102-106.
37. Sakaguchi S., Miyara M., Costantino C.M., Hafler D.A. FOXP3+ regulatory T-cells in the human immune system. Nat. Rev. Immunol., 2010, Vol. 10, no. 7, pp. 490-500.
38. Sallusto F., Lenig D., Forster R., Lipp M., Lanzavecchia A. Two subsets of memory T-lymphocytes with distinct homing potentials and effector functions. Nature, 1999, Vol. 401, no. 6754, pp. 708-712.
39. Sanchez Rodriguez R., Pauli M.L., Neuhaus I.M., Yu S.S., Arron S.T., Harris H.W., Yang S.H., Anthony B.A., Sverdrup F.M., Krow-Lucal E., MacKenzie T.C., Johnson D.S., Meyer E.H., Lohr A., Hsu A., Koo J., Liao W., Gupta R., Debbaneh M.G., Butler D., Huynh M., Levin E.C., Leon A., Hoffman W.Y., McGrath M.H., Alvarado M.D., Ludwig C.H., Truong H.A., Maurano M.M., Gratz I.K., Abbas A.K., Rosenblum M.D. Memory regulatory T-cells reside in human skin. J. Clin. Invest., 2014, Vol. 124, no. 3, pp. 1027-1036.
40. Sathaliyawala T., Kubota M., Yudanin N., Turner D., Camp P., Thome J.J., Bickham K.L., Lerner H., Goldstein M., Sykes M., Kato T., Farber D.L. Distribution and compartmentalization of human circulating and tissue-resident memory T-cell subsets. Immunity, 2013, Vol. 38, no. 1, pp. 187-197.
41. Schenkel J.M., Fraser K.A., Masopust D. Cutting edge: resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol., 2014, Vol. 192, no. 7, pp. 2961-2964.
42. Smigiel K.S., Richards E., Srivastava S., Thomas K.R., Dudda J.C., Klonowski K.D., Campbell D.J. CCR7 provides localized access to IL 2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med., 2014, Vol. 211, no. 1, pp. 121-136.
43. Tanoe T., Atarashi K., Honda K. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol., 2016, Vol. 16, no. 5, pp. 295-309.
44. Taylor J.J., Jenkins M. CD4+ memory T cell survival. Curr. Opin. Immunol., 2011, Vol. 23, pp. 319-323.
45. van der Geest K.S., Abdulahad W.H., Tete S.M., Lorencetti P.G., Horst G., Bos N.A., Kroesen B.J., Brouwer E. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp. Gerontol., 2014, Vol. 60, pp. 190-196.
46. Vukmanovic-Stejic M., Zang Y., CookJ.E., Fletcher J.M., McQuaid A., Masters J.E., Rustin M.H.A., Taams L.S., Beverley P.C.L., Macallan D.C., Akbar A.N. Human CD4+CD25hiFoxp3+ regulatory T-cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest., 2006, Vol. 116, no. 9, pp. 2423-2433.
47. Vukmanovic-Stejic M., Sandhu D., Sobande T.O., Agius E., Lacy K.E., Riddell N., Montez S., Dintwe O.B., Scriba T.J., Breuer J., Nikolich-Zugich J., Ogg G., Rustin M.H., Akbar A.N. Varicella zoster-specific CD4+Foxp3+ T cells accumulate after cutaneous antigen challenge in humans. J. Immunol., 2013, Vol. 190, no. 3, pp. 977-986.
48. Xiao-Feng Qin F. Dynamic behavior and function of FOXP3+ regulatory T cells in tumor bearing host cell. Molecular Immunol., 2009, Vol. 6, no. 1, pp. 3-13.
Review
For citations:
Oleinik E.K., Churov A.V., Oleinik V.M. IMMUNOLOGICAL MEMORY: THE ROLE OF REGULATORY CELLS (TREGS). Medical Immunology (Russia). 2018;20(5):613-620. (In Russ.) https://doi.org/10.15789/1563-0625-2018-5-613-620