Preview

Medical Immunology (Russia)

Advanced search

STUDIES OF SYSTEMIC AND LOCAL CYTOKINE LEVEL IN RETINAL VEIN OCCLUSION ASSOCIATED WITH ANTIANGIOGENIC THERAPY

https://doi.org/10.15789/1563-0625-2018-3-365-372

Abstract

The paper presents results of studying systemic and local level of cytokines in retinal vein occlusion following antiangiogenic therapy. The study of cytokine concentrations was conducted in the general group of patients, and depended on the type of retinal vein occlusion before and after intravitreal injections of Ranibizumab. We examined thirty-two patients with retinal vein occlusion. We performed standard ophthalmological examinations, spectral optical coherence tomography, fluorescent angiography in order to establish the type of retinal vein occlusion. We determined concentration of vascular endothelial growth factor (VEGF), endothelin-1, interleukin-1, interleukin-6 and tumor necrosis factor-α in serum and tears by enzyme immunoassay before treatment, and 3 months after regular injections of Ranibizumab. The obtained data prove that all the patients with retinal vein occlusion had significantly increased VEGF levels in blood serum and tear fluid compared to the control group. We have revealed a positive correlation between levels of VEGF in tear fluid, and interleukin-1, interleukin-6 and endothelin-1 in the tears, as well as with VEGF concentrations and endothelin-1 in serum. We have found an increase of endothelin-1 in tear and serum, alongd with interleukins and tumor necrosis factor-α in tear fluid, with maximal concentrations of some factors in ischemic type of retinal vein occlusion. Following antiangiogenic therapy in patients with non-ischemic type, there was a significant decrease in VEGF level, interleukin-6 and tumor necrosis factor-α in the serum, vascular endothelial growth factor and interleukin-1 in tears. In patients with ischemic type, a significant decrease in VEGF and interleukin-6 concentrations in tears, endothelin-1 and interleukin-1 in blood serum. Thus, our research showed the role of interleukins, tumor necrosis factor-α, vascular endothelial growth factor and endothelin-1 in pathogenesis of retinal vein occlusion.

About the Authors

E. A. Drozdova
South Ural State Medical University
Russian Federation

PhD, MD (Medicine), Professor, Department of Ophthalmology.

Chelyabinsk

Competing Interests:

Доктор медицинских наук, профессор кафедры глазных болезней.

Челябинск



D. Yu. Khokhlova
South Ural State Medical University
Russian Federation

Postgraduate Student, Department of Ophthalmology.

Chelyabinsk



E. A. Mezentseva
South Ural State Medical University
Russian Federation

PhD (Medicine), Associate Professor, Department of Microbiology, Virology, Immunology, and Clinical Laboratory Diagnostics.

Chelyabinsk



K. V. Nikushkina
South Ural State Medical University
Russian Federation

PhD (Medicine), Leading Research Associate, Research Institute of Immunology.

Chelyabinsk



References

1. Budzinskaya M.V., Mazurina N.K., Egorov A.E., Kuroedov A.V., Loskutov I.A., Plyukhova A.A., Razik S., Ryabtseva A.A., Simonova S.V. Retinal vein occlusion management algorithm. Part 2. Macular edema. Vestnik oftalmologii = Bulletin of Ophthalmology, 2015, Vol. 131, no. 6, pp. 57-66. (In Russ.)

2. Drozdova E.A., Khokhlova D.Yu. Dynamic assessment of morphological and immunological parameters at macular edema due to retinal vein occlusion. Prakticheskaya meditsina = Practical Medicine, 2015, Vol. 10, no. 3 (104), pp. 25-29. (In Russ.)

3. Kazarian A.A., Burladinova A.A., Lebenkova O.A. Morphological characteristics of the macula in patients with retinal vein occlusion before and after the treatment: preliminary results. Vestnik oftalmologii = Bulletin of Ophthalmology, 2014, Vol. 130, no. 1, pp. 12-17. (In Russ.)

4. Kovalchuk L.V., Gankovskaya L.V., Meshkova R.Ya. Clinical immunology and allergology with the basics of general immunology: a textbook. Мoscow: GEOTAR-Media, 2012. 640 p.

5. Drozdova E.A., Khokhlova D.Yu. The importance of the main markers of endothelial dysfunction in the development of macular edema in the retinal vein occlusion. Sovremennye tekhnologii v oftalmologii = Modern Technologies in Ophthalmology, 2016, no. 4, pp. 245-247. (In Russ.)

6. Shelankova A.V., Budzinskaya M.V., Plyukhova A.A., Mikhaylova M.A., Nurieva N.M. Analysis of changes in serum levels of endothelin-1 in patients with retinal vein occlusion. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2017, Vol. 98, no. 3, pp. 409-412. (In Russ.)

7. Shchuko A.G., Zlobin I.V., Yuryeva T.N., Ostanin A.A., Chernykh E.R. Vestnik oftalmologii = Bulletin of Ophthalmology, 2015, Vol. 131, no. 2, pp. 50-58. (In Russ.)

8. Brown D.M., Campochiaro P.A., Singh R.P., Li Z., Gray S., Saroj N., Rundle A.C., Rubio R.G., Murahashi W.Y. CRUISE Investigators. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology, 2010, Vol. 117, no. 6, pp. 1124-1133.

9. Campochiaro P.A., Heier, J.S., Feiner L., Gray S., Saroj N., Rundle A.C., Murahashi W.Y., Rubio R.G. BRAVO Investigators Ranibizumab for macular edema following branch retinal vein occlusion: six month primary end point results of phase III study. Ophthalmology, 2010, Vol. 117, no. 6, pp. 1102-1112.

10. Dacheva I., Ceglowska K., Nobl M., Nowomiejska K., Kretz F.T., Reich M., Deuchler S., Tandogan T., Auffarth G.U., Koss M.J. Correlation from undiluted vitreous cytokines of untreated central retinal vein occlusion with spectral domain optical coherence tomography. Klin. Monbl. Augenheilkd, 2016, Vol. 233, no. 7, pp. 864-868.

11. Ehlken C., Grundel B., Michels D., Junker B., Stahl A., Schlunck G., Hansen L.L., Feltgen N., Martin G., Agostini H.T., Pielen A. Increased expression of angiogenic and inflammatory proteins in the vitreous of patients with ischemic central retinal vein occlusion. PLoS ONE, 2015, Vol. 10, no. 5, e0126859. doi:10.1371/journal.pone.0126859.

12. Fauser S., Viebahn U., Muether P.S. Intraocular and systemic inflammation-related cytokines during one year of ranibizumab treatment for neovascular age-related macular degeneration. Acta Ophthalmol., 2015, Vol. 93, no. 8, pp. 734-738.

13. Feng J., Zhao T., Zhang Y., Ma Y., Jiang Y. Differences in aqueous concentrations of cytokines in macular edema secondary to branch and central retinal vein occlusion. PLoS ONE, 2013, Vol. 8, no. 7, e68149. doi: 10.1371/journal.pone.0068149.

14. Forooghian F., Kertes P.J., Eng K.T., Albiani D.A., Kirker A.W., Merkur A.B., Fallah N., Cao S., Cui J., Or C., Matsubara JA. Alterations in intraocular cytokine levels following intravitreal ranibizumab. Can. J. Ophthalmol., 2016, Vol. 51, no. 2, pp. 87-90.

15. Fujikawa M., Sawada O., Miyake T., Kakinoki M., Sawada T., Kawamura H., Ohji M. Correlation between vascular endothelial growth factor and nonperfused areas in macular edema secondary to branch retinal vein occlusion. Clin. Ophthalmol., 2013, Vol. 7, pp. 1497-1501.

16. Grierson R., Meyer-Rüsenberg B., Kunst F., Berna M.J., Richard G., Thill M. Endothelial progenitor cells and plasma vascular endothelial growth factor and stromal cell-derived factor-1 during ranibizumab treatment for neovascular age-related macular degeneration. J. Ocul. Pharmacol. Ther., 2013, Vol. 29, no. 6, pp. 530-538.

17. Groneberg T., Trattnig J.S., Feucht N., Lohmann C.P., Maier M. Morphologic patterns on spectral-domain optical coherence tomography (SD-OCT) as a prognostic indicator in treatment of macular edema due to retinal vein. Klin. Monbl. Augenheilkd, 2016, Vol. 233, no. 9, pp. 1056-1062.

18. Hayreh S.S. Retinal vein occlusion. Indian J. Ophthalmol., 1994, Vol. 42, no. 3, pp. 109-132.

19. Jung S.H., Kim K.A., Sohn S.W., Yang S.J. Association of aqueous humor cytokines with the development of retinal ischemia and recurrent macular edema in retinal vein occlusion. Invest. Ophthalmol. Vis. Sci., 2014, Vol. 55, no. 4, pp. 2290-2296.

20. Kasza M., Balogh Z., Biro L., Ujhelyi B., Damjanovich J., Csutak A., Várdai J., Berta A., Nagy V. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol., 2015, Vol. 253, no. 9, pp. 1581-1586.

21. Kida T., Flammer J., Oku H., Morishita S., Fukumoto M., Suzuki H., Konieczka K., Ikeda T. Suppressed endothelin-1 by anti-VEGF therapy is important for patients with BRVO-related macular edema to improve their vision. EPMA J., 2016, Vol. 7, no. 1, p. 18.

22. Kim S.Y., Johnson M.A., McLeod D.S. Alexander T., Hansen B.C., Lutty G.A. Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. Diabetes, 2005, Vol. 54, no. 5, pp. 1534-1542.

23. Luna J.D., Chan C.C., Derevjanik N.L., Mahlow J., Chiu C., Peng B., Tobe T., Campochiaro P.A., Vinores S.A. Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1beta-mediated breakdown. J. Neurosci. Res., 1997, Vol. 49, no. 3, pp. 268-280.

24. Miller J.W., Le Couter J., Strauss E.C., Ferrara N. Vascular endothelial growth factor A in intraocular vascular disease. Ophthalmology, 2013, Vol. 120, no. 1, pp. 106-114.

25. Mo B., Zhou H.Y., Jiao X., Zhang F. Evaluation of hyperreflective foci as a prognostic factor of visual outcome in retinal vein occlusion. Int. J. Ophthalmol., 2017, Vol. 10, no. 4, pp. 605-612.

26. Muraoka Y., Tsujikawa A., Murakami T., Ogino K., Kumagai K., Miyamoto K., Uji A., Yoshimura N. Morphologic and functional changes in retinal vessels associated with branch retinal vein occlusion. Ophthalmology, 2013, Vol. 120, no. 1, pp. 91-99.

27. Noma H., Mimura T., Yasuda K., Nakagawa H., Motohashi R., Kotake O., Shimura M. Intravitreal Ranibizumab and aqueous humor factors/cytokines in major and macular branch retinal vein occlusion. Ophthalmologica, 2016, Vol. 235, no. 4, pp. 203-207.

28. Noma H., Mimura T., Yasuda K., Shimura M. Role of soluble vascular endothelial growth factor receptor signaling and other factors or cytokines in central retinal vein occlusion with macular edema. Invest. Ophthalmol. Vis. Sci., 2015, Vol. 56, no. 2, pp. 1122-1128.

29. Pérez-Ruiz M., Ros J., Morales-Ruiz M., Navasa M., Colmenero J., Ruiz-del-Arbol L., Cejudo P., Clária J., Rivera F., Arroyo V., Rodés J., Jiménez W. Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide. Hepatology, 1999, Vol. 29, no. 4, pp. 1057-1063.

30. Pfister M., Rothweiler F., Michaelis M., Cinatl J.Jr., Schubert R., Koch F.H., Koss M.J. Correlation of inflammatory and proangiogenic cytokines from undiluted vitreous samples with spectral domain OCT scans, in untreated branch retinal vein occlusion. Clinical Ophthalmology, 2013, Vol. 7, pp. 1061-1067.

31. Scholl S., Augustin A., Loewenstein A., Rizzo S., Kupperman B. General pathophysiology of macular edema. Eur. J. Ophthalmol., 2011, Vol. 21, pp. 10-19.

32. Topcu-Yilmaz P., Atakan N., Bozkurt B., Irkec M., Aban D., Mesci L., Tezcan I. Determination of tear and serum inflammatory cytokines in patients with rosacea using multiplex bead technology. Immunol. Inflamm., 2013, Vol. 21, no. 5, pp. 351-359.


Review

For citations:


Drozdova E.A., Khokhlova D.Yu., Mezentseva E.A., Nikushkina K.V. STUDIES OF SYSTEMIC AND LOCAL CYTOKINE LEVEL IN RETINAL VEIN OCCLUSION ASSOCIATED WITH ANTIANGIOGENIC THERAPY. Medical Immunology (Russia). 2018;20(3):365-372. (In Russ.) https://doi.org/10.15789/1563-0625-2018-3-365-372

Views: 751


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)