Preview

Medical Immunology (Russia)

Advanced search

EFFECTS OF PROLINE-RICH PEPTIDES OF THE INNATE IMMUNE SYSTEM ON DRUG-RESISTANT BACTERIAL STRAINS

https://doi.org/10.15789/1563-0625-2018-1-107-114

Abstract

Resistance of pathogenic microorganisms to conventional antibiotics is growing rapidly in recent years, accompanying with an increase of mortality caused by hospital-acquired infections. Therefore, a search for novel drugs to combat antibiotic resistant bacteria is one of the priorities in biomedicine. Natural compounds which are contained in host defense effector cells of humans and animals, may serve as prototypes for developing principally new antibiotics. Such compounds include antimicrobial peptides of innate immunity, in particular, a group of proline-rich peptides. The aim of this work was to evaluate antimicrobial activity of proline-rich peptides, belonging to bactenecins family, against several clinical isolates of drug-resistant Gram-negative bacteria. The bactenecins under examination (ChBac3.4, ChBac5, mini-ChBac7.5Nα, miniChBac7.5Nβ) have been previously found in leukocytes of a domestic goat Capra hircus. We have shown that chemically synthesized analogs of these peptides exhibited a pronounced in vitro antimicrobial activity against Escherichia coli and Acinetobacter baumannii (minimum inhibitory concentrations (MIC) as estimated by a broth microdilution assay varied between 1 to 4 µM) and, to a lesser degree, against Pseudomonas aeruginosa and Klebsiella pneumoniae (MIC 2-16 µM). It was revealed that antibacterial activity of these peptides may be increased if applied in combination with some conventional, antibiotics. E.g., synergistic antimicrobial effects against E. coli have been shown for mini-ChBac7.5Nα bactenecin combined with amikacin (minimal fractional inhibitory concentration index (FICI), 0.375), A. baumannii (FICI, 0.5), and K. pneumoniae (FICI, 0.325), and, using ofloxacin, towards K. pneumoniae (FICI 0.5). Lack of hemolytic activity towards human red blood cells is an important benefit of the studied peptides when used at concentrations several times higher than those showing antimicrobial effects. The data obtained presume certain prospects for further investigations of proline-rich peptides, as well as their structural modifications, for the development of new combined drugs based on these compounds, in order to combat antibiotic-resistant microorganisms, e.g., medications for local applications, various components of medical devices, in particular, venous catheters, stents and wound dressings.

 

About the Authors

M. S. Zharkova
Institute of Experimental Medicine, St. Petersburg
Russian Federation
PhD (Biology), Research Associate


P. M. Kopeykin
Institute of Experimental Medicine, St. Petersburg
Russian Federation
Postgraduate student, Junior Research Associate


G. E. Afinogenov
St. Petersburg State University, St. Petersburg
Russian Federation
PhD, Dr. of Sci. (Medicine), MD, Professor, Dentistry Department


D. S. Orlov
Institute of Experimental Medicine, St. Petersburg; St. Petersburg State University, St. Petersburg
Russian Federation
PhD (Medicine), Associate Professor, Head of Laboratory, Institute of Experimental Medicine; Associate Professor, Department of Biochemistry, St. Petersburg State University


A. Yu. Artamonov
Institute of Experimental Medicine, St. Petersburg
Russian Federation
PhD (Biology), Research Associate


K. E. Safiullina
Institute of Experimental Medicine, St. Petersburg
Russian Federation
Bachelor student


M. S. Sukhareva
Institute of Experimental Medicine, St. Petersburg
Russian Federation
Bachelor student


E. V. Tsvetkova
Institute of Experimental Medicine, St. Petersburg; St. Petersburg State University, St. Petersburg
Russian Federation
PhD (Biology), Senior Research Associate, Institute of Experimental Medicine; Associate Professor, Department of Biochemistry


B. L. Milman
Institute of Experimental Medicine, St. Petersburg
Russian Federation
PhD, Dr. of Sci. (Chemistry), Professor, Head of Laboratory


A. G. Afinogenova
St. Petersburg State University, St. Petersburg; St. Petersburg L. Pasteur Research Institute of Epidemiology and Microbiology, St. Petersburg
Russian Federation
PhD, Dr. of Sci. (Biology), Head, Testing Laboratory Centre, St. Petersburg L. Pasteur Research Institute of Epidemiology and Microbiology; Professor, Dentistry Department, St. Petersburg State University


O. V. Shamova
Institute of Experimental Medicine, St. Petersburg; St. Petersburg State University, St. Petersburg
Russian Federation
PhD, Dr. of Sci. (Biology), Associate Professor, Head of Department, Institute of Experimental Medicine; Professor, Department of Biochemistry, St. Petersburg State University


References

1. Жаркова М.С., Орлов Д.С., Коряков В.Н., Шамова О.В. Антимикробные пептиды млекопитающих: классификация, биологическая роль, перспективы практического применения // Вестник СПбГУ. Сер. 3, 2014. Вып. 1. C. 98-114. [Zharkova M.S., Orlov D.S., Kokryakov V.N., Shamova O.V. Mammalian antimicrobial peptides: classification, biological role, perspectives of practical use. Vestnik SPbGU. = Bulletin of St. Petersburg State University. Biology, 2014, Iss. 1, pp. 98-114. (In Russ.)]

2. Кудряшов Б.А., Ляпина Л.А., Мазинг Ю.А. Кокряков В.Н., Кондашевская М.В., Шамова О.В. Действие дефенсина на процесс заживления асептической кожной раны и на проницаемость кровеносных сосудов // Бюллетень экспериментальной биологии и медицины, 1990. Т. 59, № 4. С. 391-393. [Kudriashov B.A., Kondashevskaia M.V., Liapina L.A., Kokriakov V.N., Mazing Yu.A., Shamova O.V. Effect of defensin on the process of healing of aseptic skin wound and on the permeability of blood vessels. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 1990, Vol. 59, Iss. 4, pp. 391-393. (In Russ.)]

3. Черныш С.И., Гордя Н.А. Антимикробное вещество // Патент РФ 2447896. Заявка: 2010146289/15,

4. 11.2010. Опубликовано: 20.04.2012. Бюл. № 11. 27 с. [Chernysh S.I., Gordya N.A. Antimicrobial substance. Patent of the Russian Federation 2447896. Application: 2010146289/15, 15.11.2010]. Published: 20.04.2012. Bulletin No. 11. 27 p.

5. Шамова О.В., Орлов Д.С., Жаркова М.С., Баландин С.В., Ямщикова Е.В., Кнаппе Д., Хоффманн Р., Кокряков В.Н., Овчинникова Т.В. Минибактенецины ChBac7.5N-альфа и ChBac7.5N-бета – антимикробные пептиды из лейкоцитов козы Capra hircus // Acta Naturae, 2016. Т. 8, № 3 (30). С. 108-118. [Shamova O.V., Orlov D.S., Zharkova M.S., Balandin S.V., Yamschikova E.V., Knappe D., Hoffmann R., Kokryakov V.N., Ovchinnikova T.V. Minibactenecins ChBac7.Nα and ChBac7.Nβ – antimicrobial peptides from leukocytes of the goat Capra hircus. Acta Naturae, 2016, Vol. 8, no. 3 (30), pp. 136-146.

6. Antibacterial peptide protocols. in: Methods in Molecular Biology, Vol. 78, 1997. Ed. Shafer W., Totowa, N.J.: Humana Press Inc., 1997. 259 p.

7. Benincasa M., Scocchi M., Podda E., Skerlavaj B., Dolzani L., Gennaro R. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides, 2004, Vol. 25, Iss. 12, pp. 2055-2061.

8. Chan Y., Gallo R. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas). J. Biol. Chem., 1998, Vol. 273, pp. 28978-28985.

9. Kokryakov V.N., Harvig S.S.L., Panyutich E.A., Shevchenko A.A., Aleshina G.V., Shamova O.V., Korneva E.A., Lehrer R.I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Letters, 1993, Vol. 327, Iss. 2, pp. 231-236.

10. Mansour S.C., Pena O.M., Hancock R.E. Host defense peptides: front-line immunomodulators. Trends Immunol., 2014, Vol. 35, Iss. 9, pp. 443-450.

11. Mardirossian M., Grzela R., Giglione C., Meinnel T., Gennaro R., Mergaert P., Scocchi M. The host antimicrobial peptide Bac7 1-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol., 2014, Vol. 21, Iss. 12, pp. 1639-1647.

12. Ostorhazi E., Holub M.C., Rozgonyi F., Harmos F., Cassone M., Wade J.D., Otvos L.Jr. Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int. J. Antimicrob. Agents, 2011, Vol. 3, Iss. 5, pp. 480-484.

13. Otvos L. Jr. Antibacterial peptides isolated from insects. J. Pept. Sci., 2000, Vol. 6, Iss. 10, pp. 497-511.

14. Scocchi M., Tossi A., Gennaro R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell. Mol. Life Sci., 2011, Vol. 68, Iss.13, pp. 2317-2330.

15. Shamova O.V., Brogden K.A., Zhao C., Nguen T., Turner J., Kokryakov V.N., Lehrer R.I. Purification and properties of proline-rich antimicrobial peptides from sheep and goat leukocytes. Infection and Immunity, 1999, Vol. 67, no. 8, pp. 4106-4111.

16. Shamova O., Orlov D., Stegemann C., Czihal P., Hoffmann R., Brogden K., Kolodkin N., Sakuta G., Tossi A., Sahl H.-G., Kokryakov V., Lehrer R.I. ChBac3.4: A novel proline-rich antimicrobial peptide from goat leukocytes. International Journal of Peptide Research and Therapeutics, 2009, Vol. 15, Iss. 1, pp. 31-35.


Review

For citations:


Zharkova M.S., Kopeykin P.M., Afinogenov G.E., Orlov D.S., Artamonov A.Yu., Safiullina K.E., Sukhareva M.S., Tsvetkova E.V., Milman B.L., Afinogenova A.G., Shamova O.V. EFFECTS OF PROLINE-RICH PEPTIDES OF THE INNATE IMMUNE SYSTEM ON DRUG-RESISTANT BACTERIAL STRAINS. Medical Immunology (Russia). 2018;20(1):107-114. (In Russ.) https://doi.org/10.15789/1563-0625-2018-1-107-114

Views: 1456


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)