Preview

Medical Immunology (Russia)

Advanced search

A ROLE FOR INTERLEUKIN 8 IN DIRECT REGULATION OF T CELL FUNCTIONAL ACTIVITY

https://doi.org/10.15789/1563-0625-2017-5-529-536

Abstract

CD3+T lymphocytes were isolated from normal donors by positive magnetic separation. Activation of the T cells with particles conjugated with antibodies to CD3, СD28 and СD2 molecules led to substantial increase in T cell production of interleukin-8 (IL-8). An interleukin-8 receptor (CXCR1, CD181) was initially expressed in 13.3% of T lymphocytes. Activation of T lymphocytes resulted into a detectable increase of CD181+ cell number among CD4+ naïve cells and CD4+ terminally-differentiated effector cells, and, conversely, into decrease of their number among CD4+ effector memory cells. Activation of T lymphocytes was assessed by membrane expression of CD25 molecule (receptor for IL-2). IL-8 (0.01-10.0 ng/ml) was shown to markedly reduce activation of both CD4- and CD4+ effector memory T cells, as well as terminallydifferentiated T effectors, without significantly affecting activation of naive T lymphocytes and central memory T cells. IL-8 noticeably increased IL-2 production by activated Т cells, caused a reduced IL-10 production, and did not significantly affect the secretion of IFNγ and IL-4. The data obtained suggest a significance of IL-8 for direct regulation of adaptive T cell responses.

About the Authors

M. E. Meniailo
I. Kant Baltic Federal University.
Russian Federation

Meniailo M.E., Junior Research Associate, I. Kant Baltic Federal University.

Kaliningrad.



V. V. Malashchenko
I. Kant Baltic Federal University.
Russian Federation

Malashchenko V.V., Junior Research Associate, I. Kant Baltic Federal University.

Kaliningrad.



V. A. Shmarov
I. Kant Baltic Federal University.
Russian Federation

Shmarov V.A., Junior Research Associate, I. Kant Baltic Federal University.

Kaliningrad.



N. D. Gasatova
I. Kant Baltic Federal University.
Russian Federation

Gasatova N.D., Research Associate, I. Kant Baltic Federal University.

Kaliningrad.



O. B. Melashchenko
I. Kant Baltic Federal University.
Russian Federation
Melashchenko O.B., Research Associate, I. Kant Baltic Federal University, Kaliningrad


A. G. Goncharov
I. Kant Baltic Federal University.
Russian Federation

Goncharov A.G., PhD (Medicine), Director, Center of Medical Biotechnologies, I. Kant Baltic Federal University.

Kaliningrad.



G. V. Seledtsova
Research Institute of Clinical Immunology, Siberian Branch, Russian Academy of Medical Sciences.
Russian Federation

Seledtsova G.V., PhD, MD (Medicine), Head, Laboratory of Cellular Biotechnology, Research Institute of Clinical Immunology, Siberian Branch, Russian Academy of Medical Sciences.

Novosibirsk. 



V. I. Seledtsov
Russian Research Center of Medical Rehabilitation and Balneotherapy.
Russian Federation

Seledtsov V.I., PhD, MD (Medicine), Professor, Head, Department of Diagnostic Technologies, Russian Research Center of Medical Rehabilitation and Balneotherapy.

Moscow.



References

1. Кудрявцев И.В. Т-клетки памяти: основные популяции и стадии дифференцировки // Российский иммунологический журнал, 2014. Т. 8 (17), № 4. С. 947-964. [Kudryavtsev I.V. Memory T cells: major populations and stages of differentiation. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8 (17), no. 4, pp. 947-964. (In Russ.)]

2. Меняйло М.Е., Малащенко В.В., Шмаров В.А., Газатова Н.Д., Тодосенко Н.М., Мелащенко О.Б., Гончаров А.Г., Селедцов, В.И. Прямое влияние интерлейкина-8 на активацию Т-клеток // Российский иммунологический журнал, 2016. Т. 10, № 2. С. 174-178. [Meniailo M.E., Malashchenko V.V., Shmarov V.A., Gazatova N.D., Todosenko N.M., Melashchenko O.B., Goncharov A.G., Seledsov V.I. The direct influence of interleukin-8 on T-cell activation. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2016, Vol. 10, no. 2, pp. 174-178. (In Russ.)]

3. Akhade A.S., Qadri A. T-cell receptor activation of human CD4+ T cells shifts the innate TLR response from CXCL8hiIFNγnull to CXCL8loIFN-γhi. European Journal of Immunology, 2015, Vol. 45, no. 9, pp. 2628-2637.

4. Becker S., Quay J., Koren H.S., Haskill J.S. Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am. J. Physiol., 1994, Vol. 266, no. 3, pp. L278-L286.

5. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J. Periodontol., 1993, Vol. 64, no. 5, pp. 456-460.

6. Brat D.J., Bellail A.C., van Meir E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neurooncol., 2005, Vol. 7, no. 2, pp. 122-133.

7. Casilli F., Bianchini A., Gloaguen I., Biordi L., Alesse E, Festuccia C., Cavalieri B., Strippoli R., Cervellera M.N., Di Bitondo R., Ferretti E., Mainiero F., Bizzarri C., Colotta F., Bertini R. Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2. Biochem. Pharmacol., 2005, Vol. 69, no. 3, pp. 385-394.

8. Chuntharapai A., Lee J., Hebert C.A., Kim K.J. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J. Immunol., 1994, Vol. 152, no. 12, pp. 5682-5688.

9. Clausen J., Vergeiner B., Enk M., Petzer A.L., Gastl G., Gunsilius E. Functional significance of the activationassociated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology, 2003, Vol. 207, no. 2, pp. 85-93.

10. de Oliveira S., Reyes-Aldasoro C.C., Candel S., Renshaw S.A., Mulero V., Calado A. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J. Immunol., 2013, Vol. 190, no. 8, pp. 4349-4359.

11. Dixit N., Simon S. I. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front. Immunol., 2012, Vol. 3, no. 188.

12. Francis J.N., Jacobson M.R., Lloyd C.M., Sabroe I., Durham S.R., Till S.J. CXCR1+ CD4+ T cells in human allergic disease. J. Immunol., 2004, Vol. 172, no. 1, pp. 268-273.

13. Gasser O., Missiou A., Eken C., Hess C. Human CD8+ T cells store CXCR1 in a distinct intracellular compartment and up-regulate it rapidly to the cell surface upon activation. Blood, 2005, Vol. 106, no. 12, pp. 37183724.

14. Gesser B., Deleuran B., Lund M., Vestergard C., Lohse N., Deleuran M., Jensen S.L., Pedersen S.S., ThestrupPedersen K., Larsen C.G. Interleukin-8 induces its own production in CD4+ T lymphocytes: a process regulated by interleukin 10. Biochem. Biophys. Res. Commun., 1995, Vol. 210, no. 3, pp. 660-669.

15. Gesser B., Lund M., Lohse N., Vestergaad C., Matsushima K., Sindet-Pedersen S., Larsen C.G. IL-8 induces T cell chemotaxis, suppresses IL-4, and up-regulates IL-8 production by CD4+ T cells. J. Leukoc. Biol., 1996, Vol. 59, no. 3, pp. 407-411.

16. Hedges J.C., Singer C.A., Gerthoffer W.T. Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am. J. Respir. Cell. Mol. Biol., 2000, Vol. 23, no. 1, pp. 86-94.

17. Himmel M.E., Crome S.Q., Ivison S., Piccirillo C., Steiner T.S., Levings M.K. Human CD4+ FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. European Journal of Immunology, 2011, Vol. 41, no. 2, pp. 306-312.

18. Jones S.A., Wolf M., Qin S., Mackay C.R., Baggiolini, M. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc. Natl. Acad. Sci. USA, 1996, Vol. 93, no. 13, pp. 6682-6686.

19. Kohidai L., Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, Rantes and TNF-α) in the unicellular Tetrahymena pyriformis. Cytokine, Vol. 10, no. 7, pp. 481-486.

20. L’Heureux G.P., Bourgoin S., Jean N., McColl S.R., Naccache P.H. Diverging signal transduction pathways activated by interleukin-8 and related chemokines in human neutrophils: interleukin-8, but not NAP-2 or GRO alpha, stimulates phospholipase D activity. Blood, 1995, Vol. 85, no. 2, pp. 522-532.

21. Lippert U., Zachmann K., Henz B.M., Neumann C. Human T lymphocytes and mast cells differentially express and regulate extra-and intracellular CXCR1 and CXCR2. Exp. Dermatol., 2004, Vol. 13, no. 8, pp. 520-525.

22. Murphy K., Travers P., Walport M. Janeway’s Immunobiology. New York: Garland Science, 2011. 888 p.

23. Nasser M.W., Raghuwanshi S.K., Grant D.J., Jala V.R., Rajarathnam K., Richardson R.M. Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J. Immunol., 2009, Vol. 183, no. 5, pp. 3425-3432.

24. Raghuwanshi S.K., Su Y., Singh V., Haynes K., Richmond A., Richardson R.M. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J. Immunol., 2012, Vol. 289, no. 6, pp. 2824-2832.

25. Todosenko N.M., Shmarov V.A., Malashchenko V.V., Meniailo M.E., Melashchenko O.B., Gazatova N.D., Goncharov A.G., Seledtsov V.I. Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes. Int. Immunopharmacol, 2016, Vol. 36, pp. 277-281.

26. Wechsler A.S., Gordon M.C., Dendorfer U., LeClair K.P. Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J. Immunol., 1994, Vol. 153, no. 6, pp. 2515-2523.

27. Zheng M., Sun G., Cai S., Mrowietz U. T-lymphocyte chemotaxis to IL-8 in patients with psoriasis in vitro. Chin. Med. J., 1998, Vol. 111, no. 2, pp. 166-168.


Review

For citations:


Meniailo M.E., Malashchenko V.V., Shmarov V.A., Gasatova N.D., Melashchenko O.B., Goncharov A.G., Seledtsova G.V., Seledtsov V.I. A ROLE FOR INTERLEUKIN 8 IN DIRECT REGULATION OF T CELL FUNCTIONAL ACTIVITY. Medical Immunology (Russia). 2017;19(5):529-536. (In Russ.) https://doi.org/10.15789/1563-0625-2017-5-529-536

Views: 3134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)