EFFECT OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES ON CYTOSKELETON STRUCTURE AND MIGRATION ACTIVITY OF HUMAN ENDOTHELIAL CELLS
https://doi.org/10.15789/1563-0625-2017-5-521-528
Abstract
About the Authors
E. A. StarikovaRussian Federation
Starikova E.A., PhD (Biology), Senior Research Associate, Department of Immunology, Institute of Experimental Medicine.
St. Petersburg.
J. T. Mammedova
Russian Federation
Mammedova J.T., Research Fellow, St. Petersburg State Technological University.
St. Petersburg.
L. A. Burova
Russian Federation
Burova L.A., PhD, MD (Medicine), Leading Research Associate, Department of Molecular Microbiology, Institute of Experimental Medicine.
St. Petersburg.
A. V. Sokolov
Russian Federation
Sokolov A.V., PhD (Biology), Head of Laboratory, Department of Molecular Genetics, Institute of Experimental Medicine; St. Petersburg State University.
St. Petersburg.
V. B. Vasilyev
Russian Federation
Vasilyev V.B., PhD, MD (Medicine), Head, Department of Molecular Genetics, Institute of Experimental Medicine; St. Petersburg State University.
St. Petersburg.
I. S. Freidlin
Russian Federation
Freidlin I.S., PhD, MD (Medicine), Corresponding Member, Russian Academy of Medical Sciences, Main Research Associate, Department of Immunology, Institute of Experimental Medicine; St. Petersburg State University; Pavlov First St. Petersburg State Medical University.
St. Petersburg.
References
1. Старикова Э.А., Лебедева А.М., Бурова Л.А., Фрейдлин И.С. Изменение функциональной активности эндотелиальных клеток под влиянием лизата S. pyogenes // Цитология, 2012. Т. 54, № 1. C. 49-57. [Starikova E.A., Lebedeva A.M., Burova L.A., Freidlin I.S. Regulation of endothelial cells functions by ultrasonic supernatant of Streptococcus pyogenes. Tsitologiya = Cytology, 2012, Vol. 54, no. 1, pp. 49-57. (In Russ.)]
2. Старикова Э.А., Карасева А.Б., Бурова Л.А., Суворов А.Н., Соколов А.В., Васильев В.Б., Фрейдлин И.С. Pоль аргининдеиминазы Streptococcus pyogenes M49-16 в ингибиции пролиферации эндотелиальных клеток человека линии EA.hy926 // Медицинская иммунология, 2016. Т. 18, № 6. C. 555-562. [Starikova E.A., Karaseva A.B., Burova L.A., Suvorov A.N., Sokolov A.V., Vasilyev V.B., Freidlin I.S. Role of Streptococcus pyogenes M49-16 arginine deiminase in inhibition proliferation of human endothelial cell line EA.hy926. Meditsinskaya immunologiya = Medical Immunology (Russia), 2016, Vol. 18, no. 6, pp. 555-562. (In Russ.)] doi: 10.15789/15630625-2016-6-555-562.
3. Тотолян А.А. Современные представления о Streptococcus pyogenes и вызываемой им патологии // Эволюция стрептококковой инфекции. Под ред. В.В. Левановича и В.Н. Тимченко. СПб.: Спецлит, 2015. C. 32-48. [Totolyan A.A. Cotemporary ideas about Streptococcus pyogenes and associated pathology. Evolution of streptococcal infection. Ed. by V.V. Levanovich, V.N. Timchenko]. St. Petersburg: Spetslit, 2015, pp. 32-48.
4. Beloussow K., Wang L., Wu J., Ann D., Shen W.C. Recombinant arginine deiminase as a potential antiangiogenic agent. Cancer. Lett., 2002, Vol. 183, no. 2, pp. 155-162.
5. Chen F., Lucas R., Fulton D. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction. Front. Immunol., 2013, Vol. 4, p. 184.
6. Cohen S.S. A guide to the polyamines. New York.: Oxford University Press, 1998. 565 p.
7. Cunningham M.W. Pathogenesis of Group A Streptococcal Infections. Clin. Microbial. Rev., 2000, Vol. 13, no. 3, pp. 470-511.
8. Cusumano Z.T., Caparon M. Citrulline Protects Streptococcus pyogenes from Acid Stress Using the Arginine Deiminase Pathway and the F1Fo-ATPase. J. Bacteriol., 2015, Vol. 197, no. 7, pp. 1288-1296.
9. Gallego P., Planell R, Benach J, Querol E, Perez-Pons JA, Reverter D. Structural Characterization of the Enzymes Composing the Arginine Deiminase Pathway in Mycoplasma penetrans. PLoS One, 2012, Vol. 7, no. 10, p. 86.
10. Karakozova M., Kozak M., Wong C.C., Bailey A.O., Yates J.R. 3rd, Mogilner A., Zebroski H., Kashina A. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science, 2006, Vol. 313, pp. 192-196. 11. Kurosaka S., Leu A.N., Zhang F., Bunte R., Saha S., Wang L., Guo C., He W., Kashina A. Arginylation-Dependent Neural Crest Cell Migration Is Essential for Mouse Development. PLoS Genet., 2010, Vol. 6, no. 3, pp. 45-50.
11. Moncada S., Palmer R.M.J., Higgs E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, Vol. 43, pp. 109-142.
12. Morrison R.F., Seidel E.R. Vascular endothelial cell proliferation: regulation of cellular polyamines. Cardiovasc Res., 1995, Vol. 29, pp. 841-847.
13. Noris M., Ruggenenti P., Todeschini M., Figliuzzi M., Macconi D., Zoja C., Paris S., Gaspari F., Remuzzi G. Increased nitric oxide formation in recurrent thrombotic microangiopathies: a possible mediator of microvascular injury. Am. J. Kidney Dis., 1996, Vol. 27, pp. 790-791.
14. Park I.S., Kang S.W., Shin Y.J. , Chae K.Y., Park M.O., Kim M.Y., Wheatley D.N., Min B.H. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br. J. Cancer, 2003, Vol. 89, pp. 907-914.
15. Pavlyk I., Rzhepetskyy Y., Jagielski A.K., Drozak J., Wasik A., Pereverzieva G., Olchowik M., KunzSchugart L.A., Stasyk O., Redowicz M.J. Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β actin arginylation. Amino Acids, 2015, Vol. 47, pp. 199-212.
16. Rhoads J.M., Chen W., Gookin J., Wu G.Y., Fu Q., Blikslager A.T., Rippe R.A., Argenzio R.A., Cance W.G., Weaver E.M., Romer L.H. Arginine stimulates intestinal cell migration through a focal adhesion kinase dependent mechanism. Gut, 2004, Vol. 53, no. 4, pp. 514-522.
17. Rhoads J.M., Liu Y., Niu X., Surendran S., Wu G. Arginine stimulates cdx2-transformed intestinal epithelial cell migration via a mechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J. Nutr., 2008, Vol. 138, no. 9, pp 1652-1657.
18. Saha S., Mundia M.M., Zhang F., Demers R.W., Korobova F., Svitkina T., Perieteanu A.A., Dawson J.F., Kashina A. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol. Biol. Cell., 2010, Vol. 21, pp. 1350-1361.
19. Starikova E., Sokolov A., Vlasenko A., Burova L., Freidlin I., Vasilyev V. Biochemical anbiological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem. Cell Biol., 2016, Vol. 94, pp. 1-9.
20. Takaku H., Takase M., Abe S., Hayashi H., Miyazaki K. In vivo antitumour activity of arginine deiminase purified from Mycoplasma arginine. Int. J. Cancer., 1992, Vol. 51, pp. 244-249.
21. Wei Zh., Xiaomin S., Zhou H., Luo Y. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species. Biochem. Soc. Trans., 2011, Vol. 39, no. 5, pp. 143-147.
22. Wong C.C., Xu T., Rai R., Bailey A.O., Yates J.R. 3rd, Wolf Y.I., Zebroski H., Kashina A. Global analysis of posttranslational protein arginylation. PLoS Biol., 2007, Vol. 5, p. 258.
23. Zúñiga M., Pérez G., González-Candelas G.F. Evolution of arginine deiminase (ADI) pathway genes. Mol. Phylogenet. Evol., 2002, no. 25, pp. 429-444.
Review
For citations:
Starikova E.A., Mammedova J.T., Burova L.A., Sokolov A.V., Vasilyev V.B., Freidlin I.S. EFFECT OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES ON CYTOSKELETON STRUCTURE AND MIGRATION ACTIVITY OF HUMAN ENDOTHELIAL CELLS. Medical Immunology (Russia). 2017;19(5):521-528. (In Russ.) https://doi.org/10.15789/1563-0625-2017-5-521-528