Preview

Медицинская иммунология

Расширенный поиск

ИЗМЕНЕНИЯ УРОВНЯ ЭКСПРЕССИИ ГЕНОВ Glut1, mTOR И AMPK1α ЛИМФОЦИТАМИ ПАНКРЕАТИЧЕСКИХ ЛИМФАТИЧЕСКИХ УЗЛОВ КРЫС ПРИ ЭКСПЕРИМЕНТАЛЬНОМ САХАРНОМ ДИАБЕТЕ

https://doi.org/10.15789/1563-0625-2016-4-339-346

Аннотация

С помощью молекулярно-генетических методов исследовали уровень экпрессии мРНК генов Glut1, mTOR и AMPK1α в ПЛУ крыс с экспериментальным стрептозотоцин-индуцированным сахарным диабетом (ЭСИСД) и после введений метформина. Для определения уровня мРНК исследуемых генов проводили ОТ-ПЦР в реальном времени на амплификаторе CFX96™ Real-Time PCR Detection Systems (“Bio-Rad Laboratories, Inc.”, США). Иммунопозитивные mTOR+ лимфоциты были идентифицированы с помощью метода непрямой иммунофлюоресценции с использованием моноклональных антител. Установлено, что гипергликемия вызывала транскрипционную индукцию генов транспортеров глюкозы Glut1 (в  9,9-28,9 раз, p < 0,05) и  протеинкиназы mTOR (в  5,3-3,3 раза, p < 0,05) в клетках ПЛУ. Развитие диабета также сопровождалось увеличением общего числа mTOR+ клеток в ПЛУ на 5 неделе патологического процесса на 24-34% (р < 0,05) и концентрации мишени рапамицина в иммунопозитивных клетках. Введения метформина диабетическим крысам приводили к увеличению уровня мРНК гена AMPK1α на 87% (p < 0,05) на 3 неделе и в 38 раз (p < 0,05) на 5 неделе развития ЭСИСД и угнетению экспрессии mTOR в ПЛУ (в 3-14,7 раз, p < 0,05), сопровождаясь снижением на 40% (р < 0,05) суммарной плотности mTOR+ клеток в мякотных тяжах ПЛУ у животных с 5-ти недельным ЭСИСД.

Об авторах

Д. А. Путилин
Запорожский государственный медицинский университет
Украина

ассистент кафедры нормальной физиологии,

69035, г. Запорожье, пр. Маяковского, 26



А. М. Камышный
Запорожский государственный медицинский университет
Украина
д.м.н., профессор, заведующий кафедрой микробиологии, вирусологии и иммунологии, заведующий молекулярно-генетической лабораторией


Список литературы

1. Basu S., Hubbard B., Shevach E.M. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J. Leukoc. Biol., 2015, Vol. 97, no. 2, рр. 279-283.

2. Buck M.D., O’Sullivan D., Pearce E.L. T cell metabolism drives immunity. J. Exp. Med., 2015, Vol. 212, no. 9, рр. 1345-1360.

3. Calderon B., Unanue E. Antigen presentation events in autoimmune diabetes. Curr. Opin. Immunol., 2012, Vol. 24, no. 1, рр. 119-128.

4. Chapman N.M., Chi H. mTOR signaling, Tregs and immune modulation. Immunotherapy, 2014, Vol. 6, no. 12, рр. 1295-1311.

5. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. J. Nat. Rev. Immunol., 2012, Vol. 325, р. 38.

6. Dworacki G., Urazayev O., Bekmukhambetov Y., Iskakova S., Frycz B.A., Jagodziński P.P., Dworacka M. Thymic emigration patterns in patients with type 2 diabetes treated with metformin. Immunology, 2015, Vol. 146, no. 3, рр. 456-469.

7. Foretz M., Guigas B., Bertrand L., Pollak M., Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab., 2014, Vol. 20, no. 6, рр. 953-966.

8. Forslund K., Hildebrand F., Nielsen T., Falony G. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, Vol. 528, no. 7581, рр. 262-266.

9. Gagnerault M., Lua J., Lotto C., Lepau F. Pancreatic lymph nodes are required for priming of β cell reactive T cells in NOD mice. J. Exp. Med., 2002, Vol. 196, рр. 369-377.

10. Gerriets V., Rathmell J. Metabolic pathways in T cell fate and function. Trends Immunol., 2012, Vol. 33, no. 4, рр. 168-173.

11. Green A.S., Chapuis N., Trovati M.T, Willems L., Lambert M., Arnoult C. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood, 2010, Vol. 116, рр. 4262-4273.

12. Hardie D. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. J. Diabetes, 2013, Vol. 216, р. 72.

13. Hardie D.G., Ashford M.L. AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda), 2014, Vol. 29, no. 2, рр. 99-107.

14. Kang K.Y., Kim Y.K., Yi H., Kim J., Jung H.R., Kim I.J., Cho J.H., Park S.H., Kim H.Y., Ju J.H. Metformin down regulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol., 2013, Vol. 16, no. 1, рр. 85-92.

15. Liu Y., Zhang D.T., Liu X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol., 2015, Vol. 34, no. 1, рр. 50-66.

16. Macintyre A.N., Gerriets V.A., Nichols A.G., Michalek R.D., Rudolph M.C., Deoliveira D., Anderson S.M., Abel E.D., Chen B.J., Hale L.P., Rathmell J.C. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab., 2014, Vol. 20, no. 1, рр. 61-72.

17. Michalek R.D., Gerriets V.A., Jacobs S.R., Macintyre A.N., MacIver N.J., Mason E.F., Sullivan S.A., Nichols A.G., Rathmell J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, Vol. 186, no. 6, рр. 3299-3303.

18. Nath N., Khan M., Paintlia M.K., Hoda M.N., Giri S. Metformin Attenuated the Autoimmune Disease of the Central Nervous System in Animal Models of Multiple Sclerosis. The Journal of Immunology, 2009, 182, рр. 8005-8014.

19. Palmer C.S., Hussain T., Duette G., Weller T.J., Ostrowski M., Sada-Ovalle I., Crowe S.M. Regulators of glucose metabolism in CD4+ and CD8+ T cells. Int. Rev. Immunol., 2015, Vol. 25, рр. 1-12.

20. Pearce E.L., Walsh M.C., Cejas P.J., Harms G.M., Shen H., Wang L.S., Jones R.G., Choi Y. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature, 2009, Vol. 460, рр. 103-107.

21. Pollizzi K.N., Patel C.H., Sun I.H., Oh M.H., Waickman A.T., Wen J., Delgoffe G.M., Powell J.D. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest., 2015, Vol. 125, no. 5, рр. 2090-2108.

22. Pollizzi K.N., Powell J.D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol., 2015, Vol. 36, no. 1, рр. 13-20.

23. Powell J.D., Pollizzi K.N., Heikamp E.B., Horton M.R. Regulation of immune responses by mTOR. Annu Rev. Immunol., 2012, рр. 39-68.

24. Rolf J., Zarrouk M., Finlay D.K., Foretz M., Viollet B., Cantrell D.A. AMPKα1: A glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol., 2013, Vol. 43, no. 4, рр. 889-896.

25. Russo G.L., Russo M., Ungaro P. AMP-activated protein kinase: a target for old drugs against diabetes and cancer. J. Biochem. Pharmacol., 2013, Vоl. 339, р. 50.

26. Shan J., Feng L., Sun G., Chen P., Zhou Y., Xia M., Li H., Li Y. Interplay between mTOR and STAT5 signaling modulates the balance between regulatory and effective T cells. Immunobiology, 2015, Vol. 220, no. 4, рр. 510-517.

27. Shin S., Hyun B., Lee A., Kong H., Han S., Lee C.K., Ha N.J., Kim K. Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs. Biomol. Ther., 2013, Vol. 21, no. 1, рр. 35-41.

28. Waickman A.T., Powell J.D. mTOR, metabolism, and the regulation of T-cell differentiation and function. J. Immunol Rev., 2012, рр. 43-58.

29. Wang R., Dillon C.P., Shi L.Z., Milasta S., Carter R., Finkelstein D., McCormick L.L., Fitzgerald P., Chi H., Munger J., Green D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 2011, Vоl. 35, рр. 871-882.

30. Xu X., Ye L., Araki K., Ahmed R. mTOR, linking metabolism and immunity. Semin. Immunol., 2012, Vol. 24, no. 6, рр. 429-435.

31. Yang K., Chi H. mTOR and metabolic pathways in T cell quiescence and functional activation. Semin. Immunol., 2012, Vоl. 421, р. 8. 32. Yin Y., Choi S.C., Xu Z., Zeumer L., Kanda N., Croker B.P., Morel L. Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. J. Immunol., 2015, Vol. 25, рр. 80-90.

32. Zarrouk M., Finlay D.K., Foretz M., Viollet B., Cantrell D.A. Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One., 2014, Vol. 2, no. 9, е. 106710.

33. Zeng H., Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol., 2015, Vol. 36, no. 1, рр. 3-12.


Рецензия

Для цитирования:


Путилин Д.А., Камышный А.М. ИЗМЕНЕНИЯ УРОВНЯ ЭКСПРЕССИИ ГЕНОВ Glut1, mTOR И AMPK1α ЛИМФОЦИТАМИ ПАНКРЕАТИЧЕСКИХ ЛИМФАТИЧЕСКИХ УЗЛОВ КРЫС ПРИ ЭКСПЕРИМЕНТАЛЬНОМ САХАРНОМ ДИАБЕТЕ. Медицинская иммунология. 2016;18(4):339-346. https://doi.org/10.15789/1563-0625-2016-4-339-346

For citation:


Putilin D.A., Kamyshnyi A.M. СHANGES OF Glut1, mTOR AND AMPK1α GENE EXPRESSION IN PANCREATIC LYMPH NODE LYMPHOCYTES OF RATS WITH EXPERIMENTAL DIABETES MELLITUS. Medical Immunology (Russia). 2016;18(4):339-346. (In Russ.) https://doi.org/10.15789/1563-0625-2016-4-339-346

Просмотров: 961


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)