Preview

Медицинская иммунология

Расширенный поиск

НЕФРИТОГЕННОСТЬ IgA-СВЯЗЫВАЮЩИХ STREPTOCOCCUS PYOGENES. МОДЕЛИРОВАНИЕ IgA-ГЛОМЕРУЛОНЕФРИТА

https://doi.org/10.15789/1563-0625-2016-3-221-230

Аннотация

Цель настоящего исследования состояла в создании экспериментальной кроличьей модели IgA-нефропатии. Для этого применили подходы, которые ранее с успехом использовались при моделировании постстрептококкового гломерулонефрита (PSGN), а также штаммы Streptococcus pyogenes серотипов М4 и М60, способные в разной степени связывать IgA посредством IgAFc-рецепторного белка микроба.Развитие патологического процесса в почках констатировали у большей части животных, получивших инъекции гемолитического стрептококка генотипа emm60, обладающего выраженной экспрессией IgAFcR-белка. При морфометрическом анализе у шести из 10-ти кроликов удалось обнаружить выраженные морфологические и иммунохимические изменения в почках: (i) массивные отложения IgA в мезангиальных клетках клубочков, атрофию их капиллярной сети и отек тканей; (ii) выраженное отложение С3-компонента комплемента в канальцах; (iii) значительную лимфоцитарную инфильтрацию в корковом и мозговом вещенствах почки на фоне слабой продукции цитокина TNFα. Примечательно, что во всех случаях отсутствовала депозиция IgG, что позволило исключить роль анти-IgA антител, как и других IgG, в патологическом процессе. Альтернативным источником депозиции IgA может быть отложение в ткани IgAв комплексе с IgA FcR микроба, как это было показано ранее шведской группой ученых. Описанные изменения отсутствовали в почках контрольных животных. Совокупность полученных результатов позволяет допустить, что нам удалось создать модель гломерулонефрита, близкую по проявлениям к IgA-нефропатии человека.Они также расширяют наши представления о патогенных функциях IgFc-связывающих белков в генезе патологии, вызываемой Streptococcus pyogenes.

Об авторах

Л. А. Бурова
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия

д.м.н., ведущий научный сотрудник отдела молекулярной микробиологии



П. В. Пигаревский
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия

д.б.н., руководитель отдела общей морфологии



В. А. Снегова
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия

научный сотрудник отдела общей морфологии



Н. В. Дуплик
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия

к.б.н., научный сотрудник отдела молекулярной микробиологии



Клаас Шален
Институт медицинской микробиологии Лундского Университета, Лунд, Швеция
Россия

д.м.н., сотрудник отдела медицинской микробиологии



Артем А. Тотолян
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия

д.м.н., академик РАН, главный научный сотрудник отдела молекулярной микробиологии 197376, Россия, Санкт-Петербург, ул. Академика Павлова, 12. Тел.: 8 (812) 234-68-74



Список литературы

1. Нефрология (Руководство для врачей) под редакцией И.Е.Тареевой. М.: Медицина, 1995. В 2-х томах. [Nephrology (A guide for physicians in 2 volumes. (Editor I.E.Tareeva)]. Moscow: Meditsina, 1995.

2. Barratt J., Smith A.C., Feehally J. The pathogenic role of IgA1 O-linked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton), 2007, Vol. 12, no. 3, pp. 275-284.

3. Berthelot L., Papista C., Maciel T.T., Biarnes-Pelicot M., Tissandie E., Wang P.H., Tamouza H., Jamin A., Bex-Coudrat J., Gestin A., Boumediene A., Arcos-Fajardo M., England P., Pillebout E., Walker F., Daugas E., Vrtosvnik F., Flamant M., Benhamou M., Cogné M., Moura I.C., Monteiro R.C. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med., 2012, Vol. 209, no. 4, pp. 793-806.

4. Berthelot L., Monteiro R.C. Formation of IgA deposits in Berger’s disease: what we learned from animal models. Biol. Aujourd’hui, 2013, Vol. 207, no. 4, pp. 241-247.

5. Boyd J.K., Cheung C.K, Molyneux K., Feehally J., Barratt J. An update on the pathogenesis and treatment of IgA nephropathy. Kidney International, 2012, Vol. 81, pp. 833-843.

6. Burova L., Thern A., Pigarevsky P., Seliverstova V., Gavrilova E., Nagornev V., Schalen C., Totolian A. Role of group A streptococcal IgG-binding protein in triggering experimental glomerulonephritis in the rabbit. APMIS, 2003, Vol. 111, pp. 955-962.

7. Burova L., Pigarevsky P., Seliverstova V., Gupalova T., Schalen C., Totolian A. Experimental poststreptococcal glomerulonephritis elicited by IgGFc-binding M family proteins and blocked by IgG Fc fragment. APMIS, 2012, Vol. 120, no. 3, pp. 221-230.

8. Collan Y. Morphometry in pathology: another look at diagnostic histopathology. Pathol. Res. Pract., 1984, Vol. 1, pp. 189-192.

9. Coppo R. The pathogenetic potential of environmental antigens in IgA nephropathy. Am. J. Kidney Dis., 1988, Vol. 12, no. 5, pp. 420-424.

10. Coppo R. The intestine-renal connection in IgA nephropathy. Nephrol. Dial. Transplant., 2015, Vol. 30, no. 3, pp. 360-366.

11. Hashimoto A., Suzuki Y., Suzuki H., Ohsawa I., Brown R., Hall S., Tanaka Y., Novak J., Ohi H., Tomino H. Determination of severity of murine IgA nephropathy by glomerular complement activation by aberrantly glycosylated IgA and immune complexes. Am. J. Pathol., 2012, Vol. 181, no. 4, pp. 1338-1347.

12. Jessen R.H., Emancipator S.N., Jacobs G.H., Nedrud J.G. Experimental IgA-IgG nephropathy induced by a viral respiratory pathogen. Dependence on antigen form and immune status. Lab. Invest., 1992, Vol. 67, no. 3, pp. 379-386.

13. Kovalenko P., Fujinaka H., Yoshida Y., Kawamura H., Qu Z., El-Shemi A., Li H., Matsuki A., Bilim V., Yaoita E., Abo T., Uchiyama M., Yamamoto T. Fc receptor-mediated accumulation of macrophages in crescentic glomerulonephritis induced by antiglomerular basement membrane antibody administration in WKY rats. International Immunology, 2004, Vol. 16, no. 5, pp. 625-634.

14. Liu H., Peng Y., Liu F., Xiao W., Zhang Y., Li W. Expression of IgA class switching gene in tonsillar mononuclear cells in patients with IgA nephropathy. Inflamm Res., 2011, Vol. 60, no. 9, pp. 869-878.

15. Meng H., Ohtake H., Ishida A., Ohta N., Kakehata S., Yamakawa M. IgA production and tonsillar focal infection in IgA nephropathy. J. Clin. Exp. Hematop., 2012, Vol. 52, no. 3, pp. 161-170.

16. Nakata J., Suzuki Y., Suzuki H., Sato D., Kano T., Yanagawa H., Matsuzaki K., Horikoshi S., Novak J., Tomino Y. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PloS One, 2014, Vol. 9, no. 2, e89707.

17. Okazaki K., Suzuki Y., Otsuji M., Suzuki H., Kihara M., Kajiyama T., Hashimoto A., Nishimura H., Brown R., Hall S., Novak J., Izui S., Hirose S., Tomino Y. Development of a model of early-onset IgA nephropathy. J. Am. Soc. Nephrol., 2012, Vol. 23, no. 8, pp. 1364-1374.

18. Piccolo M., De Angelis M., Lauriero G., Montemurno E., Di Cagno R., Gobbetti M. Salivary Microbiota associated with immunoglobulin A. Nephropathy. Microb. Ecol., 2015, Vol. 70, no. 2, pp. 557-565.

19. Schmitt R., Carlsson F., Mörgelin M., Tati R., Lindahl G., Karpman D. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch-Schonlein purpura. Am. J. Pathol., 2010, Vol. 176, no. 2, pp. 608-618.

20. Schmitt R., Ståhl A., Olin A., Kristoffersson A.-C., Rebetz A., Novak J., Lindahl G., Karpman D. The combined role of galactose-deficient IgA1 and Streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: Implications for IgA nephropathy. J. Immunol., 2014, Vol. 193, no. 1, pp. 317-326.

21. Stenberg L., O’Toole P., Lindahl G. Many group A streptococcal strains express two different immunoglobulin-binding proteins, encoded by closely linked genes: characterization of the proteins expressed by four strains of different M-type. Molecular Microbiology, 1992, Vol. 6, no. 9, pp. 1185- 1194.

22. Suzuki H., Run Fan, Zhixin Zhang, Brown R., Hall S., Bruce A.J., Chatham W.W., Suzuki Y., Wyatt R.J.,

23. Moldoveanu Z., Lee J.Y., Robinson J., Tomana M., Tomino Y., Mestecky J., Novak J. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest., 2009, Vol. 119, no. 6, pp. 1668-1677.

24. Suzuki H., Kiryluk K., Novak J., Moldoveanu Z., Herr A.B., Renfrow M.B., Wyatt R.J., Scolari F., Mestecky J., Gharavi A.G., Bruce A.J. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol., 2011, Vol. 22, pp. 1795-1803.

25. Suzuki H., Suzuki Y., Novak J., Tomino Y. Development of animal models of human IgA nephropathy. Drug Discov. Today Dis. Models, 2014, Vol. 11, pp. 5-11.

26. Tanaka M., Seki G., Someya T., Nagata M., Fujita T. Aberrantly glycosylated IgA1 as a factor in the pathogenesis of IgA nephropathy. Clin. Dev. Immunol., 2011, Vol. 2011, ID 470803.

27. Tian J., Wang Y., Zhou X., Li Y., Wang C., Li J., Li R. Rapamycin slows IgA nephropathy progression in the rat. Am. J. Nephrol., 2014, Vol 39. no. 3, pp. 218-229.

28. Tomana M., Matousovic K., Julian B.A., Radl J., Konecny K., Mestecky J. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int., 1997, Vol. 52, no. 2, pp. 509-516.

29. Wyatt R.J., Bruce A.J. IgA Nephropathy. N. Engl. J. Med., 2013, Vol. 368, pp. 202-214.


Рецензия

Для цитирования:


Бурова Л.А., Пигаревский П.В., Снегова В.А., Дуплик Н.В., Шален К., Тотолян А.А. НЕФРИТОГЕННОСТЬ IgA-СВЯЗЫВАЮЩИХ STREPTOCOCCUS PYOGENES. МОДЕЛИРОВАНИЕ IgA-ГЛОМЕРУЛОНЕФРИТА. Медицинская иммунология. 2016;18(3):221-230. https://doi.org/10.15789/1563-0625-2016-3-221-230

For citation:


Burova L.A., Pigarevsky P.V., Snegova V.A., Duplik N.V., Schalen K., Totolian A.A. NEPHRITOGENIC ACTIVITY OF IgA-BINDING STREPTOCOCCUS PYOGENES: AN EXPERIMENTAL MODEL OF IgA GLOMERULONEPHRITIS. Medical Immunology (Russia). 2016;18(3):221-230. (In Russ.) https://doi.org/10.15789/1563-0625-2016-3-221-230

Просмотров: 612


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)