Preview

Медицинская иммунология

Расширенный поиск

ИММУНОСУПРЕССОРНЫЕ ЭФФЕКТЫ АРГИНИНДЕИМИНАЗЫ STREPTOCOCCUS PYOGENES

https://doi.org/10.15789/1563-0625-2015-4-303-318

Полный текст:

Аннотация

Многие патогенные микроорганизмы используют метаболические пути аргинина для успешной диссеминации. Бактериальная аргининдеиминаза гидролизует аргинин с образованием одной молекулы аммиака и двух молекул АТФ. Активность фермента способствует улучшению выживаемости патогенных бактерий в условиях пониженной кислотности в очаге инфекции или в фаголизосомах, в анаэробных условиях, а также приводит к дефициту аргинина. Метаболизм аргинина играет важную роль в регуляции функций клеток иммунной системы. У млекопитающих аргинин является субстратом ферментов NOS и аргиназы. Деплеция аргинина является одним из механимов иммуносупресии. В обзоре проводится анализ данных литературы о влиянии стрептококковой аргинидеиминазы на метаболизм аргинина эукариотических клеток, а также обсуждается иммуносупрессорное действие фермента.

Об авторах

Э. А. Старикова
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия
к.б.н., старший научный сотрудник, отделение иммунологии


А. В. Соколов
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия
к.б.н., заведующий лабораторией, отделение молекулярной генетики


Л. А. Бурова
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия
д.м.н., ведущий научный сотрудник, отделение молекулярной микробиологии


И. С. Фрейдлин
ФГБНУ «Институт экспериментальной медицины», Санкт-Петербург, Россия
Россия
д.м.н., член-корр. РАН, главный научный сотрудник, отделение иммунологии


Список литературы

1. Amber I.J., Hibbs J.B.Jr., Parker C.J., Johnson B.B., Taintor R.R., Vavrin Z. Activated macrophage conditioned medium: identification of the soluble factors inducing cytotoxicity and the L-arginine dependent effector mechanism. J. Leukoc. Biol., 1991, Vol. 49, no. 6, pp. 610-620.

2. Aulak K.S., Miyagi M., Yan L., West K.A., Massillon D., Crabb J.W., Stuehr D.J. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc. Natl Acad. Sci. USA, 2001, Vol. 98, pp. 12056-12061.

3. Bahri S., Zerrouk N., Aussel C., Moinard C., Crenn P., Curis E., Chaumeil J.C., Cynober L., Sfar S. Citrulline: from metabolism to therapeutic use. Nutrition, 2013, Vol. 29, no. 3, pp. 479-484.

4. Baydoun A.R., Bogle R.G., Pearson J.D., Mann G.E. Discrimination between citrulline and arginine transport in activated murine macrophages: inefficient synthesis of NO from recycling citrulline to arginine. Br. J. Pharmacol., 1994, Vol. 112, pp. 487-492.

5. Baylis C. Nitric oxide deficiency in chronic kidney disease. Am. J. Physiol. Renal. Physiol., 2008, Vol. 294, Vol. 1, pp. 1-9.

6. Beloussow K., Wang L., Wu J., Ann D., Shen W.C. Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer. Lett., 2002, Vol. 183, Vol. 2, pp. 155-162.

7. Biswas S.K., Mantovani A. Orchestration of metabolism by macrophages. Cell Metab., 2012, Vol. 15, no. 4, pp. 432-437.

8. Bobermin L.D., Quincozes-Santos A., Guerra M.C., Leite M.C., Souza D.O., Goncalves C.-A., Gottfried C. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells. PLOS., 2012, Vol. 7, e52164.

9. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol., 2015, Vol. 36, no. 3, pp. 161-178.

10. Brasse-Lagnel C., Fairand A., Lavoinne A., Husson A. Glutamine stimulates argininosuccinate synthetase gene expression through cytosolic O-glycosylation of Sp1 in Caco-2 cells. J. Biol. Chem., 2003, Vol. 278, pp. 52504-52510.

11. Bronte V., Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol., 2005, Vol. 5, no. 8, pp. 641-654.

12. Bronte V., Serafini P., De Santo C., Marigo I., Tosello V., Mazzoni A., Segal D.M., Staib C., Lowel M., Sutter G., Colombo M.P., Zanovello P. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol., 2003, Vol. 170, pp. 270-278.

13. Casiano-Colon A., Marquis R.E. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol., 1988, Vol. 54, no. 6, pp. 1318-1324.

14. Chen F., Lucas R., Fulton D. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction. Front. Immunol., 2013, Vol. 4, no. 184.

15. Closs E.I., Simon A., Vekony N., Rotmann A. Plasma membrane transporters for arginine. J. Nutr., 2004, Vol. 134, no. 10, pp. 2752S-2759.

16. Cole C., Thomas S., Filak H., Henson P.M., Lenz L.L. Nitric oxide increases susceptibility of toll-like receptor-activated macrophages to spreading Listeria monocytogenes. Immunity, 2012, Vol. 36, no. 5, pp. 807-820.

17. Cullen M.E., Yuen A.H., Felkin L.E., Smolenski R.T., Hall J.L., Grindle S., Miller L.W., Birks E.J., Yacoub M.H., Barton P.J. Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized aſter recovery: potential implications for local creatine synthesis. Circulation, 2006, Vol. 114, pp. 16-20.

18. Cunin R.N. Glansdorff A.P., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev., 1986, Vol. 50, pp. 314-352.

19. Cusumano Z.T., Watson M.E.Jr., Caparon M.G. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infect. Immun., 2014, Vol. 82, no. 1, pp. 233-242.

20. Das P., Lahiri A., Lahiri A. and Chakravortty D. Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator. PLoS Pathog., 2010, Vol. 6, no. 6.

21. de Jonge W.J., Kwikkers K.L., te Velde A.A., van Deventer S.J., Nolte M.A., Mebius R.E., Ruijter J.M., Lamers M.C., Lamers W.H. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J. Clin. Invest., 2002, Vol. 110, no. 10, pp. 1539-1548.

22. Degnan B.A., Fontaine M.C., Doebereiner A.H., Lee J.J., Mastroeni P., Dougan G., Goodacre J.A., Kehoe M.A. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect. Immun., 2000, Vol. 68, no. 5, pp. 2441-2448.

23. Degnan B.A., Palmer J.M., Robson T., Jones C.E., Fischer M., Glanville M., Mellor G.D., Diamond A.G., Kehoe M.A., Goodacre J.A. Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect Immun., 1998, Vol. 66, no. 7, pp. 3050-3058.

24. Deignan J.L., Livesay J.C., Yoo P.K., Goodman S.I., O’Brien W.E., Iyer R.K., Cederbaum S.D., Grody W.W. Ornithine deficiency in the arginase double knockout mouse. Mol. Genet. Metab., 2006, Vol. 89, pp. 87-96.

25. Durante W. Role of arginase in vessel wall remodeling. Front. Immunol., 2013, Vol. 4, no. 111.

26. Erez A. Argininosuccinic aciduria: from a monogenic to a complex disorder. Genet. Med. 2013, Vol. 15, no. 4, pp. 251-257.

27. Fingar D.C., Richardson C.J., Tee A.R., Cheatham L., Tsou C., Blenis J. mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. Molecular and Cellular Biology., 2004, Vol. 24, no. 1, pp. 200-216.

28. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol., 2004, Vol. 4, pp. 941-952.

29. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, Vol. 9, no. 3, pp. 162-174.

30. Ghosh P., Sica A., Young H.A., Ye J., Franco J.L., Wiltrout R.H., Longo D.L., Rice N.R., Komschlies K.L. Alterations in NF kappa B/Rel family proteins in splenic T-cells from tumor-bearing mice and reversal following therapy. Cancer. Res., 1994, Vol. 54, pp. 2969-2972.

31. Goldmann O., Rohde M., Chhatwal G.S., Medina E. Role of macrophages in host resistance to group A streptococci. Infect. Immun., 2004, Vol. 72, pp. 2956-2963.

32. Gong H., Zolzer F., von Recklinghausen G., Havers W., Schweigerer L. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia., 2000, Vol. 14, pp. 826-829.

33. Goodwin B.L., Solomonson L.P., Eichler D.C. Argininosuccinate Synthase Expression Is Required to Maintain Nitric Oxide Production and Cell Viability in Aortic Endothelial Cells. J. Biol Chem., 2004, Vol. 279, no. 18, pp. 18353-18360.

34. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol., 2005, Vol. 5, pp. 953-964.

35. Granger D.L., Hibbs J.B., Perfect Jr.J.R., Durack D.T. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J. Clin. Invest., 1988, Vol. 81, no. 4, pp. 1129-1136.

36. Gross T.J., Kremens K., Powers L.S., Brink B., Knutson T., Domann F.E. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J. Immunol., 2014, Vol. 192, no. 5, pp. 2326-2338.

37. Guei T.R., Liu M.C., Yang C.P., Su T.S. Identification of a liver-specific cAMP response element in the human argininosuccinate synthetase gene. Biochem. Biophys. Res. Commun., 2008, Vol. 377, pp. 257-261.

38. Hammermann R., Bliesener N., Mossner J., Klasen S., Wiesinger H., Wessler I., Race K. Inability of rat alveolar macrophages to recycle L-citrulline to L-arginine despite induction of argininosuccinate synthetase mRNA and protein, and inhibition of nitric oxide synthesis by exogenous L-citrulline. Naunyn-Schmiedeberg´s Arch. Pharmacol., 1998, Vol. 358, pp. 601-607.

39. Hecker M., Sessa W.C., Harris H.J., Anggard E.E., Vane J.R. The metabolism of L-arginine and its significance for endotheliumderived relaxing factor: cultured endothelial cells recycle Lcitrulline to L-arginine. Proc. Natl. Acad. Sci. USA, 1990, Vol. 87, pp. 8612-8616.

40. Heid M.E., Keyel P.A., Kamga C., Shiva S., Watkins S.C., Salter R.D. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol., 2013, Vol. 191, no. 10, pp. 5230-5238.

41. Henningham A., Ericsson D.J., Langer K., Casey L.W., Jovcevski B., Chhatwal G.S., Aquilina J.A., Batzloff M.R., Kobe B., Walker M.J. Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. M. Bio, 2013, Vol. 4, no. 4.

42. Hibbs J.B.Jr., Vavrin Z., Taintor R.R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol., 1987, Vol. 138, no. 2, pp. 550-565.

43. Hibbs J.B.Jr., Taintor R.R., Vavrin Z., Rachlin E.M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun., 1988, Vol. 157, pp. 87-94.

44. Item C.B., Stockler-Ipsiroglu S., Stromberger C., Muhl A., Alessandri M.G., Bianchi M.C., Tosetti M., Fornai F., Cioni G. Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. J. Hum. Genet. 2001, Vol. 69, no. 5, pp. 1127-1133.

45. Iyer R.K., Yoo P.K., Kern R.M., Rozengurt N., Tsoa R., O’Brien W.E., Yu H., Grody W.W., Cederbaum S.D. Mouse model for human arginase deficiency. Mol. Cell. Biol., 2002, Vol. 22, no. 13, pp. 4491-4498.

46. Iyo A.H., Zhu M.Y., Ordway G.A., Regunathan S. Expression of arginine decarboxylase in brain regions and neuronal cells. J. Neurochem., 2006, Vol. 96, no. 4, pp. 1042-1050.

47. Jayasekera J.P., Vinuesa, C.G., Karupiah, G., King, N.J.C. Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J. Gen. Virol., 2006, no. 87, pp. 3361-3371.

48. Kanaoka M., Kawanaka T.C., Negoro Y., Fukita K.T., Agui H. Cloning and expression of the antitumor glycoprotein gene of Streptococcus pyogenes Su in Escherichia coli. Agric. Biol. Chem., 1987, Vol. 51, pp. 2641-2648.

49. Kapp K., Prufer S., Michel C.S., Habermeier A., Luckner-Minden C., Giese T., Bomalaski J., Langhans C.D., Kropf P., Muller I., Closs E.I., Radsak M.P., Munder M. Granulocyte functions are independent of arginine availability. J. Leukoc. Biol., 2014, Vol. 96, no. 6, pp. 1047-1053.

50. Kim R.H., Coates J.M., Bowles T.L., McNerney G.P., Sutcliffe J., Jung J.U., Gandour-Edwards R., Chuang F.Y., Bold R.J., Kung H.J. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer. Res., 2009, Vol. 69, pp. 700-708.

51. Komada Y., Zhang X.L., Zhou Y.W., Ido M., Azuma E. Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int. J. Hematol., 1997, Vol. 65, no. 2, pp. 129-141.

52. Kuo M.T., Savaraj N., Feun L.G. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget., 2010, Vol. 1, no. 4, pp. 246-251.

53. Landau G., Bercovich Z., Park M.H., Kahana C. The Role of Polyamines in Supporting Growth of Mammalian Cells Is Mediated through Their Requirement for Translation Initiation and Elongation. Biol. Chem., 2010, Vol. 285, no. 17, pp. 12474-12481.

54. Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell, 2014, Vol. 149, pp. 274-293.

55. LeBien T.W. Arginine: an unusual dietary requirement of pre-B lymphocytes? J. Clin. Invest., 2002, Vol. 11, pp. 1411-1413.

56. Lee S.W., Heonsik C., Eun S.-Y., Fukuyama S., Croſt M. Nitric oxide modulates TGF-beta-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development. J. Immunol., 2011, Vol. 186, pp. 6972-6980.

57. Li H., Meininger C.J., Hawker J.R.Jr, Haynes T.E., Kepka-Lenhart D., Mistry S.K. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab., 2001, Vol. 280, no. 1, pp. 75-82.

58. Li H., Meininger C.J., Kelly K.A., Hawker J.R. Jr, Morris S.M. Jr, Wu G. Activities of arginase I and II are limiting for endothelial cell proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, Vol. 282, no. 1, pp. 64-69.

59. Mattila J.T., Thomas A.C. Nitric oxide synthase: non-canonical expression patterns. Front. Immunol., 2014, Vol. 9, no. 5, p. 478.

60. Miescher S., Whiteside T.L., Carrel S., von Fliedner V. Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J. Immunol., 1986, Vol. 136, pp. 1899-1907.

61. Mishalian I., Ordan M., Peled A., Maly A., Eichenbaum M.B., Ravins M., Aychek T., Jung S., Hanski E. Recruited macrophages control dissemination of group A streptococcus from infected soſt tissues. J. Immunol., 2011, Vol. 187, pp. 6022-6031.

62. Miyazaki K., Takaku H., Umeda M., Fujita T., Huang W., Kimura T., Yamashita J. and Horio T. Potent Growth Inhibition of Human Tumor Cells in Culture by Arginine Deiminase Purified from a Culture Medium of a Mycoplasma-infected Cell Line. Cancer Research, 1990, Vol. 50, pp. 4522-4527.

63. Mizoguchi H., O’Shea J.J., Longo D.L., Loeffler C.M., McVicar D.W., Ochoa A.C. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science, 1992, Vol. 258, pp. 1795-1798.

64. Morris S.M.Jr. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. Metab. Care, 2012, Vol. 15, no. 1, pp. 64-70.

65. Morris S.M.Jr. Recent advances in arginine metabolism: roles and regulation of the arginases. British Journal of Pharmacology, 2009, Vol. 157, no. 6, pp. 922-930.

66. Morris S.M.Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr., 2002, Vol. 22, pp. 87-105.

67. Morrison R.F., Seidel E.R. Vascular endothelial cell proliferation: regulation of cellular polyamines. Cardiovasc. Res., 1995, Vol. 29, no. 6, pp. 841-847.

68. Morrow K., Hernandez C.P., Raber P., Del Valle L., Wilk A.M., Majumdar S., Wyczechowska D., Reiss K., Rodriguez P.C. Anti-leukemic mechanisms of pegylated arginase I in acute lymphoblastic T-cell leukemia. Leukemia, 2013, Vol. 27, no. 3, pp. 569-577.

69. Munder M., Mollinedo F., Calafat J., Canchado J., Gil-Lamaignere C., Fuentes J.M., Luckner C., Doschko G., Soler G., Eichmann K., Muller F.M., Ho A.D., Goerner M., Modolell M. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 2005, Vol. 105, no. 6, pp. 2549-2556.

70. Murohara T., Asahara T., Silver M., Bauters C., Masuda H., Kalka C., Kearney M., Chen D., Symes J.F., Fishman M.C., Huang P.L., Isner J.M. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest., 1998, Vol. 101, pp. 2567-2578.

71. Murray P.J., Wynn T.A. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol., 2011, Vol. 89, no. 4, pp. 557-563.

72. Nobbs A.H., Lamont R.J., Jenkinson H.F. Streptococcus Adherence and Colonization. Microbiology and Molecular Biology Reviews, 2009, Vol. 73, no. 3, pp. 407-450.

73. Noh E.J., Kang S.W., Shin Y.J., Kim D.C., Park I.S., Kim M.Y., Chun B.G., Min B.H. Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Mol. Cells, 2002, Vol. 28, no. 13, no. 1, pp. 137-143.

74. Norenberg M.D. Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology, 2003, Vol. 37, pp. 245-248.

75. Oberlies J., Watzl C., Giese T., Luckner C., Kropf P., Müller I., Ho A.D., Munder M. Regulation of NK cell function by human granulocyte arginase. J. Immunol., 2009, Vol. 182, no. 9, pp. 5259-5267.

76. Obermajer N., Wong J.L., Edwards R.P., Chen K., Scott M., Khader S., Kolls J.K., Kunle Odunsi, Billiar T.R. and Kalinski P. Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J. Exp. Med., 2013, Vol. 210, pp. 1433-1445.

77. Papapetropoulos A., Garcia-Cardena G., Madri J.A., Sessa W.C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest., 1997, Vol. 100, no. 12, pp. 3131-3139.

78. Park I.-S., Kang S.-W., Shin Y.-J., Chae K.-Y., Park M.-O., Kim M.-Y., Wheatley D.N., Min B.-H. Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. British Journal of Cancer, 2003, Vol. 89, pp. 907-914.

79. Pekarek L.A., Starr B.A., Toledano A.Y., Schreiber H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med., 1995, Vol. 181, pp. 435-440.

80. Pernow J., Jung C. Arginase as a potential targetin the treatment of cardiovascular disease: reversal of arginine steal? Cardiovasc. Res., 2013, Vol. 98, no. 3, pp. 334-343.

81. Phillips M.M., Sheaff M.T., Szlosarek P.W. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer. Res. Treat., 2013, Vol. 45, no. 4, pp. 251-562.

82. Raber P., Ochoa A.C., Rodriguez P.C. Metabolism of L-Arginine by Myeloid-Derived Suppressor Cells in Cancer: Mechanisms of T cell suppression and Therapeutic Perspectives. Immunol. Invest., 2012, Vol. 41, no. 6-7, pp. 614-634.

83. Rabier D., Kamoun P. Metabolism of citrulline in man. Amino Acid., 1995, Vol. 9, pp. 299-316.

84. Racke K., Warnken M. L-Arginine Metabolic Pathways. The Open Nitric Oxide Journal, 2010, Vol. 2, pp. 9-19.

85. Raijman L. Citrulline synthesis in rat tissues and liver content of carbamoyl phosphate and ornithine. Biochem. J., 1974, Vol. 138, pp. 225-232.

86. Ramirez M., Wek R.C., Vazquez de Aldana C.R., Jackson B.M., Freeman B., Hinnebusch A.G. Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol. Cell. Biol., 1992, Vol. 12, no. 12, pp. 5801-5815.

87. Rato C., Amirova S.R., Declan G.B., Stansfield I., Wallace H.M. Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshiſt. Nucleic Acids Res., 2011, Vol. 39, no. 11, pp. 4587-4597.

88. Rodriguez P.C., Zea A.H., DeSalvo J., Culotta K.S., Zabaleta J., Quiceno D.G., Ochoa J.B., Ochoa A.C. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol., 2003, Vol. 171, no. 3, pp. 1232-1239.

89. Saha S., Kashina A. Posttranslational Arginylation as a Global Biological Regulator. Dev. Biol., 2011, Vol. 358, no. 1, pp. 1-8.

90. Saini A.S., Shenoy G.N., Rath S., Bal V., George A. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat. Immunol., 2014, Vol. 15, pp. 275-282.

91. Santhanam L., Lim H.K., Lim H.K., Miriel V., Brown T., Patel M., Balanson S., Ryoo S., Anderson M., Irani K., Khanday F., Di Costanzo L., Nyhan D., Hare J.M., Christianson D.W., Rivers R., Shoukas A., Berkowitz D.E. Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ. Res., 2007, Vol. 101, pp. 692-702.

92. Savaraj N., You M., Wu C., Wangpaichitr M., Kuo M.T., Feun L.G. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr. Mol. Med., 2010, Vol. 10, pp. 405-412.

93. Schneemann M., Schoeden G. Macrophage biology and immunology: man is not a mouse. J. Leukoc. Biol., 2007, Vol. 81, no. 3, p. 579.

94. Schneemann M., Schoedon G. Species differences in macrophage NO production are important. Nat. Immunol., 2002, Vol. 3, no. 2, p. 102.

95. Scotton C.J., Martinez F.O., Smelt M.J., Sironi M., Locati M., Mantovani A., Sozzani S. Transcriptional profiling reveals complex regulation of the monocyte IL-1β system by IL-13. J. Immunol., 2005, Vol. 174, pp. 834-845.

96. Takahashi Y., Mai M., Nishioka K. alpha-difluoromethylornithine induces apoptosis as well as anti-angiogenesis in the inhibition of tumor growth and metastasis in a human gastric cancer model. Int. J. Cancer, 2000, Vol. 85, no. 2, pp. 243-247.

97. Takaku H., Takase M., Abe S., Hayashi H., Miyazaki K. In vivo antitumour activity of arginine deiminase purified from Mycoplasma arginine. Int. J. Cancer, 1992, Vol. 51, pp. 244-249.

98. Tasaki T., Kwon Y.T. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci., 2007, Vol. 32, no. 11, pp. 520-528.

99. Tezuka H., Abe Y., Iwata M., Takeuchi H., Ishikawa H., Matsushita M., Shiohara T., Akira S., Ohteki T. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cell. Nature, 2007, Vol. 448, pp. 929-933.

100. Thomas A.C., Mattila J.T. “Of mice and men”: arginine metabolism in macrophages. Front Immunol., 2014, Vol. 5, p. 479.

101. Thomas J.B., Holtsberg F.W., Ensor C.M., Bomalaski J.S., Clark M.A. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor alpha and endotoxin. Biochem. J., 2002, Vol. 363, pp. 581-587.

102. Tumurkhuu G., Koide N., Dagvadorj J., Noman A.S.M., Khuda I.I.-E., Naiki Y., Komatsu T., Yoshida T., Yokochi T. B1 cells produce nitric oxide in response to a series of toll-like receptor ligands. Cell. Immunol., 2010, Vol. 261, pp. 122-127.

103. Villalobo A. Nitric oxide and cell proliferation. FEBS J., 2006, Vol. 273, no. 11, pp. 2329-2344.

104. Wakabayashi Y., Yamada E., Yoshida T., Takahashi H. Arginine becomes an essential amino acid aſter massive resection of rat small intestine. J. Biol. Chem., 1994, Vol. 269, no. 51, pp. 32667-32671.

105. Wek R.C., Ramirez M., Jackson B.M., Hinnebusch A.G. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expressio. Mol. Cell. Biol., 1990, Vol. 10, no. 6, pp. 2820-2831.

106. Wek S.A., Zhu S., Wek R.C. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol., 1995, Vol. 8, pp. 4497-5506.

107. Whiteside T.L., Rabinowich H. The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother., 1998, Vol. 46, pp. 175-184.

108. Windmueller H.G., Spaeth A.E. Source and fate of circulating citrulline. Am. J. Physiol., 1981, Vol. 241, pp. 473-480.

109. Winterhoff N., Goethe R., Gruening P., Rohde M., Kalisz H., Smith H.E., Valentin-Weigand P. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the Arginine Deiminase system of Streptococcus pyogenes. J. Bacteriol., 2002, Vol. 184, no. 24, pp. 6768-6776.

110. Wirawan E., Vanden Berghe T., Lippens S., Agostinis P., Vandenabeele P. Autophagy: for better or for worse. Cell Res., 2012, Vol. 1, no. 43-61.

111. Witte M.B., Barbul A. Arginine physiology and its implication for wound healing. Wound Repair Regen., 2003, Vol. 11, pp. 419-423.

112. Wu G., Brosnan N.T. Macrophages can convert citrulline into arginine. Biochem. J., 1992, Vol. 281, pp. 45-48. 113. Wynn T.A., Chawla A. and Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature, 2013. Vol. 496, pp. 445-456.

113. Xia Y., Roman L.J., Masters B.S., Zweier J.L. Inducible nitric-oxide synthase generates superoxide from the reductase domain. J. Biol. Chem., 1998, Vol. 273, pp. 22635-22639.

114. Yang J., Zhang R., Lu G., Shen Y., Peng L., Zhu C., Cui M., Wang W., Arnaboldi P., Tang M., Gupta M., Qi C. F., Jayaraman P., Zhu H., Jiang B., Chen S.-h., He J.C., Ting A.T., Zhou M.-MKuchroo V.K., Morse H.C., III, Ozato K., Sikora A.G., Xiong H. T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation. J. Exp. Med., 2013, Vol. 210, pp. 1447-1462.

115. Yoshida J., Takamura S., Suzuki S. Cell growth inhibitory action of SAGP, an antitumor glycoprotein from Streptococcus pyogenes (Su strain). Jpn. J. Pharmacol., 1987, Vol. 5, no. 2, pp. 143-147.

116. Yoshida J., Takamura S., Nishio M. Characterization of a streptococcal antitumor glycoprotein (SAGP). Life Sci., 11998, Vol. 2, no. 12, pp. 1043-1053.

117. Zea A.H., Rodriguez P.C., Culotta K.S., Hernandez C.P., DeSalvo J., Ochoa J.B., Park H.J., Zabaleta J., Ochoa A.C. l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol., 2004, Vol. 232, pp. 21-31.

118. Zhang R., Wang L., Zhang L., Chen J., Zhu Z., Zhang Z., Chopp M. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP aſter stroke in the rat. Circ. Res., 2003, Vol. 92, pp. 308-313.

119. Zharikov S., Krotova K., Hu H., Baylis C., Johnson R.J., Block E.R., Patel J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell. Physiol., 2008, Vol. 295, pp. 1183-1190.

120. Zhu M.Y., Iyo A., Piletz J.E., Regunathan S. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim. Biophys. Acta, 2004, Vol. 1670, no. 2, pp. 156-164.

121. Zhuo W., Song X., Zhou H., Luo Y. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species. Biochem. Soc. Trans., 2011, Vol. 5, pp. 1376-1381.


Для цитирования:


Старикова Э.А., Соколов А.В., Бурова Л.А., Фрейдлин И.С. ИММУНОСУПРЕССОРНЫЕ ЭФФЕКТЫ АРГИНИНДЕИМИНАЗЫ STREPTOCOCCUS PYOGENES. Медицинская иммунология. 2015;17(4):303-318. https://doi.org/10.15789/1563-0625-2015-4-303-318

For citation:


Starikova E.A., Sokolov A.V., Burova L.A., Freidlin I.S. IMMUNOSUPPRESSIVE EFFECTS OF ARGININE DEIMINASE FROM STREPTOCOCCUS PYOGENES. Medical Immunology (Russia). 2015;17(4):303-318. (In Russ.) https://doi.org/10.15789/1563-0625-2015-4-303-318

Просмотров: 434


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)