CANCER IMMUNOTHERAPY BASED ON THE BLOCKADE OF IMMUNE CHECKPOINTS
https://doi.org/10.15789/1563-0625-2015-5-395-406
Abstract
Immune checkpoints represent the system of inhibitory mechanisms regulating the activation of the immune response, preventing the autoimmune processes and modulating the immune response by decreasing the immune cell-mediated damage of tissues and organs. Tumor cells may utilize these checkpoints to prevent the activation of tumor-specific lymphocytes, thereby acquiring resistance against the immune response. The blockade of inhibitory signal that is transduced in immune checkpoints leading to the reactivation of antitumor immune response is a promising method of tumor immunotherapy. Since the majority of immune checkpoints are based on the ligand-receptor interactions, one of contemporary modalities of anti-tumor therapy is based on the development of ligandor receptor-blocking therapeutic monoclonal antibodies, as well as soluble recombinant receptors capable of competing for a ligand and thereby modulating the signal transduction. In the past few years, this field of tumor immunotherapy experienced an impressive success; however, the potential tradeoff for altering of the natural suppressive mechanisms is the development of the autoimmune reactions.
About the Authors
A. V. BogolyubovaRussian Federation
Junior Research Associate, Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences; Department of Immunology, Faculty of Biology, Moscow State University;
Address for correspondence: Bogolyubova Apollinariya V. Engelhardt Institute of Molecular Biology of Russian Academy of Sciences 119991, Russian Federation, Moscow, Vavilov str., 32. Phone: 7 (499) 135-99-64. Fax: 7 (499) 135-14-05. E-mail: apollinariya.bogolyubova@gmail.com
G. A. Efimov
Russian Federation
PhD (Biology), Head, Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russian Federation; Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences
M. S. Drutskaya
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Molecular Mechanisms of Immunity
S. A. Nedospasov
Russian Federation
PhD, MD (Biology), Professor, Head, Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences; Department of Immunology, Faculty of Biology, Moscow State University
References
1. Alegre M.L., Noel P.J., Eisfelder B.J., Chuang E., Clark M.R., Reiner S.L., Thompson C.B. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol., 1996, Vol. 157, no. 11, pp. 4762-4770.
2. Béraud-Dufour S., Balch W. A journey through the exocytic pathway. J. Cell Sci., 2002, Vol. 115, Pt 9, pp. 1779-1780.
3. Bogunovic D.1, O’Neill D.W., Belitskaya-Levy I., Vacic V., Yu Y.L., Adams S., Darvishian F., Berman R., Shapiro R., Pavlick A.C., Lonardi S., Zavadil J., Osman I., Bhardwaj N. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc. Natl. Acad. Sci. U. S. A., 2009, Vol. 106, no. 48, pp. 20429-20434.
4. Brahmer J.R. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, Vol. 28, no. 19, pp. 3167-3175.
5. Brahmer J.R.1, Tykodi S.S., Chow L.Q., Hwu W.J., Topalian S.L., Hwu P., Drake C.G., Camacho L.H., Kauh J., Odunsi K., Pitot H.C., Hamid O., Bhatia S., Martins R., Eaton K., Chen S., Salay T.M., Alaparthy S., Grosso J.F., Korman A.J., Parker S.M., Agrawal S., Goldberg S.M., Pardoll D.M., Gupta A., Wigginton J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, Vol. 366, no. 26, pp. 2455-2465.
6. Bruyns E. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3-zeta complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med., 1998, Vol. 188, no. 3, pp. 561-575.
7. Cai X.F.1, Tao Z., Yan Z.Q., Yang S.L., Gong Y. Molecular cloning, characterisation and tissue-specific expression of human LAG3, a member of the novel Lag1 protein family. DNA Seq., 2003, Vol. 14, no. 2, pp. 79-86.
8. Carthon B.C.1, Wolchok J.D., Yuan J., Kamat A., Ng Tang D.S., Sun J., Ku G., Troncoso P., Logothetis C.J., Allison J.P., Sharma P. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res., 2010, Vol. 16, no. 10, pp. 2861-2871.
9. Ceeraz S., Nowak E.C., Noelle R.J. B7 family checkpoint regulators in immune regulation and disease. Trends in Immunology, 2013, Vol. 34, no. 11, pp. 556-563.
10. Chemnitz J.M. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol., 2004, Vol. 173, no. 2, pp. 945-954.
11. Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, Vol. 39, no. 1, pp. 1-10.
12. Choueiri T.K., Fay A.P., Gray K.P., Callea M., Ho T.H., Albiges L., Bellmunt J., Song J., Carvo I., Lampron M., Stanton M.L., Hodi F.S., McDermott D.F., Atkins M.B., Freeman G.J., Hirsch M.S., Signoretti S. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol., 2014, Vol. 25, no. 11, pp. 2178-2184.
13. Collins M., Ling V., Carreno B.M. The B7 family of immune-regulatory ligands. Genome Biol., 2005, Vol. 6, no. 6, p. 223.
14. Cooper Z.A., Juneja V.R., Sage P.T., Frederick D.T., Piris A., Mitra D., Lo J.A., Hodi F.S., Freeman G.J., Bosenberg M.W., McMahon M., Flaherty K.T., Fisher D.E., Sharpe A.H., Wargo J.A. Response to BRAF Inhibition in Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunol. Res., 2014, Vol. 2, no. 7, pp. 643-654.
15. D’Souza-Schorey C., Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol., 2006, Vol. 7, no. 5, pp. 347-358.
16. Dangaj D., Scholler N. Blocking the B7-H4 pathway with novel recombinant antibodies enhances T cellmediated antitumor responses. Oncoimmunology, 2013, Vol. 2, no. 8, p. e25913.
17. Deeks E.D. Nivolumab: a review of its use in patients with malignant melanoma. Drugs, 2014, Vol. 74, no. 11, pp. 1233-1239.
18. Dong H. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, Vol. 5, no. 12, pp. 1365-1369.
19. Greenwald R.J., Freeman G.J., Sharpe A.H. The B7 family revisited. Annu. Rev. Immunol., 2005, Vol. 23, pp. 515-548.
20. Hashiguchi M., Kobori H., Ritprajak P., Kamimura Y., Kozono H., Azuma M. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. U. S. A., 2008, Vol. 105, no. 30, pp. 10495-10500.
21. Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S., Sosman J.A., McDermott D.F., Powderly J.D., Gettinger S.N., Kohrt H.E., Horn L., Lawrence D.P., Rost S., Leabman M., Xiao Y., Mokatrin A., Koeppen H., Hegde P.S., Mellman I., Chen D.S., Hodi F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. Nature Publishing Group, 2014, Vol. 515, no. 7528, pp. 563-567.
22. Hodi F.S. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl. Acad. Sci. U. S. A., 2003, Vol. 100, pp. 4712-4717.
23. Hodi F.S.1, O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., Akerley W., van den Eertwegh A.J., Lutzky J., Lorigan P., Vaubel J.M., Linette G.P., Hogg D., Ottensmeier C.H., Lebbé C., Peschel C., Quirt I., Clark J.I., Wolchok J.D., Weber J.S., Tian J., Yellin M.J., Nichol G.M., Hoos A., Urba W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, Vol. 363, no. 8, pp. 711-723.
24. Howard T.A., Rochelle J.M., Seldin M.F. CD28 and CTLA-4, two related members of the Ig supergene family, are tightly linked on proximal mouse chromosome 1. Immunogenetics, 1991, Vol. 33, no. 1, pp. 74-76.
25. Ishida M.1, Iwai Y., Tanaka Y., Okazaki T., Freeman G.J., Minato N., Honjo T. Differential expression of PDL1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett., 2002, Vol. 84, no. 1, pp. 57-62.
26. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, Vol. 11, no. 11, pp. 3887-3895.
27. Jing W., Gershan J.A., Weber J., Tlomak D., McOlash L., Sabatos-Peyton C., Johnson B.D. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J. Immunother. Сancer. BioMed Central Ltd, 2015, Vol. 3, no. 1, p. 2.
28. Kakavand H., Wilmott J.S., Menzies A.M., Vilain R., Haydu L.E., Yearley J.H., Thompson J.F., Kefford R.F., Hersey P., Long G.V. Scolyer RA6PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor treated melanoma patients. Clin. Cancer Res., 2015.
29. Kearney E.R., Walunas T.L., Karr R.W., Morton P.A., Loh D.Y., Bluestone J.A., Jenkins M.K. Antigendependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol., 1995, Vol. 155, no. 3, pp. 1032-1036.
30. Krummel M.F., Sullivan T.J., Allison J.P. Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int. Immunol., 1996, Vol. 8, no. 4, pp. 519-523.
31. Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, Vol. 271, pp. 1734-1736.
32. Lee H. Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J. Cancer Res. Clin. Oncol., 2010, Vol. 136, no. 9, pp. 1445-1452.
33. Lee K.M.1, Chuang E., Griffin M., Khattri R., Hong D.K., Zhang W., Straus D., Samelson L.E., Thompson C.B., Bluestone J.A. Molecular basis of T cell inactivation by CTLA-4. Science., 1998, Vol. 282, no. 5397, pp. 2263-2266.
34. Liang S.C., Latchman Y.E., Buhlmann J.E., Tomczak M.F., Horwitz B.H., Freeman G.J., Sharpe A.H. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol., 2003, Vol. 33, no. 10, pp. 2706-2716.
35. Linsley P.S. Distinct roles for CD28 and cytotoxic T lymphocyte-associated molecule-4 receptors during T cell activation? J. Exp. Med., 1995, Vol. 182, no. 2, pp. 289-292.
36. Loo D., Alderson R.F., Chen F.Z., Huang L., Zhang W., Gorlatov S., Burke S., Ciccarone V., Li H., Yang Y., Son T., Chen Y., Easton A.N., Li J.C., Rillema J.R., Licea M., Fieger C., Liang T.W., Mather J.P., Koenig S., Stewart S.J., Johnson S., Bonvini E., Moore P.A. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res., 2012, Vol. 18, no. 14, pp. 3834-3845.
37. Loos M., Hedderich D.M., Friess H., Kleeff J. B7-H3 and its role in antitumor immunity. Clin. Dev. Immunol., 2010, Vol. 2010, p. 683875.
38. Maine C.J. Programmed death ligand-1 over-expression correlates with malignancy and contributes to immune regulation in ovarian cancer. Cancer Immunol. Immunother., 2014, Vol. 63, no. 3, pp. 215-224.
39. Mao Y., Li W., Chen K., Xie Y., Liu Q., Yao M., Duan W., Zhou X., Liang R., Tao M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget., 2015, Vol. 6, no. 5, pp. 3452-3461.
40. Martin M., Schneider H., Azouz A., Rudd C.E. Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J. Exp. Med., 2001, Vol. 194, no. 11, pp. 1675-1681.
41. Martin-Orozco N., Li Y., Wang Y., Liu S., Hwu P., Liu Y.J., Dong C., Radvanyi L. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res., 2010, Vol. 70, no. 23, pp. 9581-9590.
42. Masteller E.L., Chuang E., Mullen A.C., Reiner S.L., Thompson C.B. Structural analysis of CTLA-4 function in vivo. J. Immunol., 2000, Vol. 164, no. 10, pp. 5319-5327.
43. McArthur G.A., Ribas A. Targeting Oncogenic Drivers and the Immune System in Melanoma. J. Clin. Oncol., 2012, Vol. 31, no. 4, pp. 499-506.
44. Merrill S.P., Reynolds P., Kalra A., Biehl J., Vandivier R.W., Mueller S.W. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically ill patient. Ann. Pharmacother., 2014, Vol. 48, no. 6, pp. 806-810.
45. Minor D.R., Chin K., Kashani-Sabet M. Infliximab in the treatment of anti-CTLA4 antibody (Ipilimumab) induced immune-related colitis. Cancer Biother. Radiopharm., 2009, Vol. 24, no. 3, pp. 321-325.
46. Naluai A.T., Nilsson S., Samuelsson L., Gudjónsdóttir A.H., Ascher H., Ek J., Hallberg B., Kristiansson B., Martinsson T., Nerman O., Sollid L.M., Wahlström J. The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens, 2000, Vol. 56, no. 4, pp. 350-355.
47. Nivolumab Approved for Lung Cancer. Cancer Discov., 2015.
48. Noel P.J., Boise L.H., Thompson C.B. Regulation of T cell activation by CD28 and CTLA4. Adv. Exp. Med. Biol., 1996, Vol. 406, pp. 209-217.
49. Ohigashi Y., Sho M., Yamada Y., Tsurui Y., Hamada K., Ikeda N., Mizuno T., Yoriki R., Kashizuka H., Yane K., Tsushima F., Otsuki N., Yagita H., Azuma M., Nakajima Y. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin. Cancer Res., 2005, Vol. 11, no. 8, pp. 2947-2953.
50. Okamura T. Roles of LAG3 and EGR2 in regulatory T cells. Ann. Rheum. Dis., 2012, Vol. 71, Suppl. 2, pp. i96-i100.
51. Okazaki T., Maeda A., Nishimura H., Kurosaki T., Honjo T. PD-1 immunoreceptor inhibits B cell receptormediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. U. S. A., 2001, Vol. 98, no. 24, pp. 13866-13871.
52. Okazaki T., Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol., 2006, Vol. 27, no. 4, pp. 195-201.
53. Pagès C., Gornet J.M., Monsel G., Allez M., Bertheau P., Bagot M., Lebbé C., Viguier M. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res., 2013, Vol. 23, no. 3, pp. 227-230.
54. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012, Vol. 12, no. 4, pp. 252-264.
55. Pedoeem A., Azoulay-Alfaguter I., Strazza M., Silverman G.J., Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin. Immunol., 2014, Vol. 153, no. 1, pp. 145-152.
56. Perkins D., Wang Z., Donovan C., He H., Mark D., Guan G., Wang Y., Walunas T., Bluestone J., Listman J., Finn P.W. Regulation of CTLA-4 expression during T cell activation. J. Immunol., 1996, Vol. 156, no. 11, pp. 41544159.
57. Phan G.Q., Yang J.C., Sherry R.M., Hwu P., Topalian S.L., Schwartzentruber D.J., Restifo N.P., Haworth L.R., Seipp C.A., Freezer L.J., Morton K.E., Mavroukakis S.A., Duray P.H., Steinberg S.M., Allison J.P., Davis T.A., Rosenberg S.A. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U. S. A., 2003, Vol. 100, pp. 8372-8377.
58. Postow M.A., Chesney J., Pavlick A.C., Robert C., Grossmann K., McDermott D., Linette G.P., Meyer N., Giguere J.K., Agarwala S.S., Shaheen M., Ernstoff M.S., Minor D., Salama A.K., Taylor M., Ott P.A., Rollin L.M., Horak C., Gagnier P., Wolchok J.D., Hodi F.S. Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma. N. Engl. J. Med., 2015, Vol. 372, no. 21, pp. 2006-2017.
59. Powles T., Eder J.P., Fine G.D., Braiteh F.S., Loriot Y., Cruz C., Bellmunt J., Burris H.A., Petrylak D.P., Teng S.L., Shen X., Boyd Z., Hegde P.S., Chen D.S., Vogelzang N.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. Nature Publishing Group, 2014, Vol. 515, no. 7528, pp. 558-562.
60. Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S., Sansom D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science, 2011, Vol. 332, no. 6029, pp. 600-603.
61. Reichert J.M. Antibodies to watch in 2015. MAbs, 2015, Vol. 7, no. 1, pp. 1-8.
62. Ribas A. Clinical development of the antiCTLA-4 antibody tremelimumab. Semin. Oncol., 2010, Vol. 37, pp. 450-454.
63. Ribas A., Kefford R., Marshall M.A., Punt C.J., Haanen J.B., Marmol M., Garbe C., Gogas H., Schachter J., Linette G., Lorigan P., Kendra K.L., Maio M., Trefzer U., Smylie M., McArthur G.A., Dreno B., Nathan P.D., Mackiewicz J., Kirkwood J.M., Gomez-Navarro J., Huang B., Pavlov D., Hauschild A. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol., 2013, Vol. 31, no. 5, pp. 616-622.
64. Robert C., Ribas A., Wolchok J.D., Hodi F.S., Hamid O., Kefford R., Weber J.S., Joshua A.M., Hwu W.J., Gangadhar T.C., Patnaik A., Dronca R., Zarour H., Joseph R.W., Boasberg P., Chmielowski B., Mateus C., Postow M.A., Gergich K., Elassaiss-Schaap J., Li X.N., Iannone R., Ebbinghaus S.W., Kang S.P., Daud A. Antiprogrammed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet., 2014, Vol. 384, no. 9948, pp. 1109-1117.
65. Romano E., Kusio-Kobialka M., Foukas P.G., Baumgaertner P., Meyer C., Ballabeni P., Michielin O., Weide B., Romero P., Speiser D.E. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. U. S. A., 2015, Vol. 112, no. 19, pp. 6140-6145.
66. Rudd C.E. The reverse stop-signal model for CTLA4 function. Nat. Rev. Immunol., 2008, Vol. 8, no. 2, pp. 153-160.
67. Salama A.D., Chitnis T., Imitola J., Ansari M.J., Akiba H., Tushima F., Azuma M., Yagita H., Sayegh M.H., Khoury S.J. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med., 2003, Vol. 198, no. 1, pp. 71-78
68. Salceda S., Tang T., Kmet M., Munteanu A., Ghosh M., Macina R., Liu W., Pilkington G., Papkoff J. The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp. Cell Res., 2005, Vol. 306, no. 1, pp. 128-141.
69. Schneider H., Smith X., Liu H., Bismuth G., Rudd C.E. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol., 2008, Vol. 38, no. 1, pp. 40-47.
70. Schneider H., Martin M., Agarraberes F.A., Yin L., Rapoport I., Kirchhausen T., Rudd C.E. Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol., 1999, Vol. 163, no. 4, pp. 1868-1879.
71. Schneider H., Schwartzberg P.L., Rudd C.E. Resting lymphocyte kinase (Rlk/Txk) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem. Biophys. Res. Commun., 1998, Vol. 252, no. 1, pp. 14-19.
72. Shin D.S., Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr. Opin. Immunol., 2015, Vol. 33C, pp. 23-35.
73. Sim G.C., Martin-Orozco N., Jin L., Yang Y., Wu S., Washington E., Sanders D., Lacey C., Wang Y., Vence L., Hwu P., Radvanyi L. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J. Clin. Invest., 2014, Vol. 124, no. 1, pp. 99-110.
74. Takahashi T., Tagami T., Yamazaki S., Uede T., Shimizu J., Sakaguchi N., Mak T.W., Sakaguchi S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyteassociated antigen 4. J. Exp. Med., 2000, Vol. 192, no. 2, pp. 303-310.
75. Tamura H., Dan K., Tamada K., Nakamura K., Shioi Y., Hyodo H., Wang S.D., Dong H., Chen L., Ogata K. Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin. Cancer Res., 2005, Vol. 11, no. 16, pp. 5708-5717.
76. Thompson R.H., Kwon E.D. Significance of B7-H1 overexpression in kidney cancer. Clin. Genitourin. Cancer, 2006, Vol. 5, no. 3, pp. 206-211.
77. Topalian S.L., Sznol M., McDermott D.F., Kluger H.M., Carvajal R.D., Sharfman W.H., Brahmer J.R., Lawrence D.P., Atkins M.B., Powderly J.D., Leming P.D., Lipson E.J., Puzanov I., Smith D.C., Taube J.M., Wigginton J.M., Kollia G.D., Gupta A., Pardoll D.M., Sosman J.A., Hodi F.S. Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab. J. Clin. Oncol., 2014, Vol. 32, no. 10, pp. 1020-1030.
78. Tringler B., Zhuo S., Pilkington G., Torkko K.C., Singh M., Lucia M.S., Heinz D.E., Papkoff J., Shroyer K.R. B7-h4 is highly expressed in ductal and lobular breast cancer. Clin. Cancer Res., 2005, Vol. 11, no. 5, pp. 1842-1848.
79. Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J.E., Pai S.I., Shalabi A., Shin T., Pardoll D.M., Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med., 2001, Vol. 193, no. 7, pp. 839-846.
80. Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., West A.N., Carmona M., Kivork C., Seja E., Cherry G., Gutierrez A.J., Grogan T.R., Mateus C., Tomasic G., Glaspy J.A., Emerson R.O., Robins H., Pierce R.H., Elashoff D.A., Robert C., Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, Vol. 515 (7528), pp. 568-571.
81. Valk E., Leung R., Kang H., Kaneko K., Rudd C.E., Schneider H. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity, 2006, Vol. 25, no. 5, pp. 807-821.
82. van der Merwe P.A., Bodian D.L., Daenke S., Linsley P., Davis S.J. CD80 (B7-1) binds both CD28 and CTLA4 with a low affinity and very fast kinetics. J. Exp. Med., 1997, Vol. 185, no. 3, pp. 393-403.
83. Weber J.S., Kähler K.C., Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 2012, Vol. 30, no. 21, pp. 2691-2697.
84. Wiendl H. Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J., 2003, Vol. 17, no. 13, pp. 1892-1894.
85. Wintterle S., Schreiner B., Mitsdoerffer M., Schneider D., Chen L., Meyermann R., Weller M., Wiendl H. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res., 2003, Vol. 63, no. 21, pp. 7462-7467.
86. Wolchok J.D., Neyns B., Linette G., Negrier S., Lutzky J., Thomas L., Waterfield W., Schadendorf D., Smylie M., Guthrie T.Jr., Grob J.J., Chesney J., Chin K., Chen K., Hoos A., O’Day S.J., Lebbé C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet. Oncol., 2010, Vol. 11, no. 2, pp. 155-164.
87. Wolchok J.D., Kluger H., Callahan M.K., Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R.A., Reed K., Burke M.M., Caldwell A., Kronenberg S.A., Agunwamba B.U., Zhang X., Lowy I., Inzunza H.D., Feely W., Horak C.E., Hong Q., Korman A.J., Wigginton J.M., Gupta A., Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, Vol. 369, no. 2, pp. 122-133.
88. Yamazaki T., Akiba H., Koyanagi A., Azuma M., Yagita H., Okumura K. Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production. J. Immunol., 2005, Vol. 175, no. 3, pp. 1586-1592.
89. Zang X., Thompson R.H., Al-Ahmadie H.A., Serio A.M., Reuter V.E., Eastham J.A., Scardino P.T., Sharma P., Allison J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. U. S. A., 2007, Vol. 104, no. 49, pp. 19458-19463.
90. Zhu C., Anderson A.C., Schubart A., Xiong H., Imitola J., Khoury S.J., Zheng X.X., Strom T.B., Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol., 2005, Vol. 6, no. 12, pp. 1245-1252.
Review
For citations:
Bogolyubova A.V., Efimov G.A., Drutskaya M.S., Nedospasov S.A. CANCER IMMUNOTHERAPY BASED ON THE BLOCKADE OF IMMUNE CHECKPOINTS. Medical Immunology (Russia). 2015;17(5):395-406. (In Russ.) https://doi.org/10.15789/1563-0625-2015-5-395-406