Preview

Medical Immunology (Russia)

Advanced search

PATTERN RECOGNITION RECEPTORS AND THEIR ROLE IN IMMUNOPATHOGENESIS OF PNEUMONIA (LITERATURE REVIEW)

https://doi.org/10.15789/1563-0625-PRR-3328

Abstract

Non-specific binding of antigens is provided by the so-called pattern recognition receptors (PRR). PRR can be located on the cell membrane, in the cytosol and in soluble form in the blood serum. Membrane receptors include: TOLL-like receptors, C-type lectin receptors, scavenger receptors. TLR, NOD-like receptors, RIG-I-like receptors, AIM-2-like receptors are located in the cytosol. Soluble receptors include pentraxins, collectins, and ficolins. After a microorganism enters the lungs, non-specific defense factors and innate immunity mechanisms are primarily involved in the immune response. If non-specific recognition of pathogens is ineffective, a pneumonia focus is formed. In this regard, the role of PRR in the development of community-acquired pneumonia is of interest. To search for literature sources, an analysis of the scientific databases Scopus, Web of Science, Pubmed, CyberLeninka, and RINTS was conducted. Studies have demonstrated the importance of TLR4 in the fight against gram-positive and gram-negative microorganisms. In addition, the level of the lectin receptor sCD206 in the blood has been established as a predictor of severe pneumonia and death. Increased production of the scavenger receptor CD5-like receptor is observed in pneumonia caused by S.aureus. NOD-like receptors play an important role in the fight against Acinetobacter baumannii. Pentraxins perform many functions: they are opsonins, activate complement via the classical pathway, activate neutrophils, and regulate chemotaxis and apoptosis. In adults, elevated blood CRP levels correspond to disease severity. Determining CRP levels helps differentiate pneumonia from other acute respiratory infections. PTX3 is a factor that can help determine the severity and prognosis of pneumonia. MBL recognizes capsular lipopolysaccharides, lipopolysaccharides of the cell wall of gram-negative bacteria, lipoarabinomannans, fungal mannans, SARS-CoV-2 glycoproteins, PAMP of protozoa and helminths. Ficolins interact with viral, bacterial and fungal antigens. L-ficolin recognizes pneumococcal pneumolysin, activates complement via the lectin pathway, thereby neutralizing the toxin. Thus, the critical role of innate immunity factors in the pathogenesis of pneumonia is beyond doubt, but requires further research. Studying the mechanisms of disease immunopathogenesis will allow the development of new prognostic models and improve the effectiveness of therapy, especially in severe cases of pneumonia.

About the Authors

Maxim Olegovich Zolotov
Samara State Medical University, Samara, Russian Federation
Russian Federation

PhD, Associate Professor of the Department of Medical Microbiology and Immunology, Head of the Laboratory of Translational Technologies and Interdisciplinary Relations of the Professional Center for Education and Research in Genetic and Laboratory Technologies


Competing Interests:

The author declare no conflict of interest



Natalia Begievna Migacheva
Samara State Medical University, Samara, Russian Federation
Russian Federation

PhD, MD (Medicine), Associate Professor, Head of the Department of Pediatrics IPE, Samara State Medical University, Samara, Russia


Competing Interests:

The author declare no conflict of interest



Artem Victorovich Lyamin
Samara State Medical University, Samara, Russian Federation
Russian Federation

PhD, MD (Medicine), Associate Professor; Professor of the Department of Medical Microbiology and Immunology; Director of the Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia


Competing Interests:

The author declare no conflict of interest



References

1. Буданова Е.В., Свитич О.А., Шуленина Е.А., Зверев В.В. Ассоциация экспрессии генов врожденного иммунитета TLR2, TLR4, TLR9 с течением острой респираторной инфекции, вызванной Klebsiella pneumoniae in vivo // Медицинская иммунология, 2018. Т. 20, № 3. С. 425-430. Budanova E.V., Svitich O.A., Shulenina E.A., Zverev V.V. Association of TLR2, TLR4, TLR9 gene expression related to innate immunity with in vivo acute respiratory infections caused by Klebsiella pneumoniae. Meditsinskaya Immunologiya = Medical immunology (Russia), 2018, Vol. 20, no. 3, pp. 425-430. (In Russ.). DOI: 10.15789/1563-0625-2018-3-425-430

2. Минаков А.А., Вахлевский В.В., Волошин Н.И., Харитонов М.А., Салухов В.В., Тыренко В.В., Рудаков В.Ю., Вахлевская Е.Н., Алехина Е.В. Новый взгляд на этиологию и иммунологические аспекты пневмонии // Медицинский совет, 2023. Т. 17, № 4. С. 141-153.

3. Minakov A.A., Vakhlevskii V.V., Voloshin N.I., Kharitonov M.A., Salukhov V.V., Tyrenko V.V., Rudakov V.Yu., Vakhlevskaya E.N., Alekhina E.V.. Modern view on the etiology and immunological aspects of pneumonia. Meditsinskiy sovet = Medical Council., 2023, Vol. 17, no. 4, pp. 141-153. (In Russ.). DOI: 10.21518/ms2023-056

4. Министерство Здравоохранения Российской Федерации. Клинические рекомендации. Внебольничная пневмония у взрослых, 2024, 73 с. Ministry of Health of the Russian Federation. Clinical guidelines. Community-acquired pneumonia in adults, 2024, 73 p. https://cr.minzdrav.gov.ru/view-cr/654_2

5. Мищенко А.А. Трансмембранные лектиновые рецепторы C-типа в иммунитете // Вестник Сыктывкарского университета. Серия 2: Естествознание. Медицина, 2021. Т. 4, № 20, С. 8-21.

6. Mischenko A.A. Transmembrane C-type lectin receptors in immunity. Vestnik Syktyvkarskogo universiteta. Seriya 2: Yestestvoznaniye. Meditsina. = Syktyvkar University Bulletin. Series 2: Natural Science. Medicine, 2021, no. 4, pp. 8-21. (In Russ.) DOI:10.34130/2306-6229-2021-4-8.

7. Саидов М.З. DAMP-опосредованное воспаление и регулируемая гибель клеток при иммуновоспалительных ревматических заболеваниях // Медицинская иммунология, 2023. Т. 25, № 1, С. 7-38. Saidov M.Z. DAMP-mediated inflammation and regulated cell death in immunoinflammatory rheumatic diseases. Meditsinskaya Immunologiya = Medical immunology (Russia), 2023, Vol. 25, no. 1, pp. 7-38. (In Russ.) DOI: 10.15789/1563-0625-DMI-2557

8. Смольникова М.В., Терещенко С.Ю. Протеины лектинового пути активации системы комплемента: иммунобиологические функции, генетика и участие в патогенезе заболеваний человека // Инфекция и иммунитет, 2022. Т. 12, № 2, С. 209–221. Smolnikova M.V., Tereshchenko S.Yu. Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the pathogenesis of human diseases. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, Vol. 12, no. 2, pp. 209–221. (In Russ.) DOI: 10.15789/2220-7619-POT-1777

9. Терещенко С.Ю., Смольникова М.В. Врожденные дисфункции паттернраспознающих рецепторов в патогенезе инвазивной и рецидивирующей пневмококковой инфекции у детей // Инфекция и иммунитет, 2019. Т. 9, № 2, С. 229-238. Tereshchenko S.Yu., Smolnikova M.V. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, Vol. 9, no. 2, pp. 229-238. (In Russ.) DOI: 10.15789/2220-7619-2019-2-229-238

10. Aabenhus R., Jensen J.U., Jørgensen K.J., Hróbjartsson A., Bjerrum L. Biomarkers as point-of-care tests to guide prescription of antibiotics in patients with acute respiratory infections in primary care. Cochrane Database Syst Rev, 2014, no. 11, pp. CD010130. Update in: Cochrane Database Syst Rev, 2022, no. 10, pp. CD010130.

11. DOI: 10.1002/14651858.CD010130.pub3

12. Alay H., Laloglu E. The role of angiopoietin-2 and surfactant protein-D levels in SARS-CoV-2-related lung injury: A prospective, observational, cohort study. J Med Virol, 2021, Vol. 93, no. 10, pp. 6008-6015.

13. DOI: 10.1002/jmv.27184

14. Ali Y.M., Kenawy H.I., Muhammad A., Sim R.B., Andrew P.W., Schwaeble W.J. Human L-ficolin, a recognition molecule of the lectin activation pathway of complement, activates complement by binding to pneumolysin, the major toxin of Streptococcus pneumoniae. PLoS One, 2013, Vol. 8, no. 12, pp. e82583. DOI: 10.1371/journal.pone.0082583

15. Bist P., Dikshit N., Koh T.H., Mortellaro A., Tan T.T., Sukumaran B. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun, 2014, Vol. 82, no. 3, pp. 1112-1122. DOI: 10.1128/IAI.01459-13

16. Brisse M., Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol, 2019, no. 10, pp. 1586. DOI: 10.3389/fimmu.2019.01586

17. Britton N., Kitsios G., Fitch A., Methe B., Mcverry B., Morris A. Diversity of the lung mycobiome is associated with severity of disease in acute respiratory distress syndrome. European Respiratory Journal, 2020, no. 56.(suppl 64), pp. 3722. DOI: 10.1183/13993003.congress-2020.3722

18. Cai X., Fu Y., Chen Q. Association between TLR4 A299G polymorphism and pneumonia risk: a meta-analysis. Med Sci Monit, 2015, no. 21, pp. 625-629. DOI: 10.12659/MSM.892557

19. Cedzyński M., Świerzko A.S. Collectins and ficolins in neonatal health and disease. Front Immunol, 2023, no. 14, pp. 1328658. DOI: 10.3389/fimmu.2020.585243

20. Chalmers J.D., Fleming G.B., Rutherford J., Matsushita M., Kilpatrick D.C., Hill A.T. Serum ficolin-2 in hospitalised patients with community-acquired pneumonia. Inflammation, 2014, Vol. 37, no. 5, pp. 1635-1641. DOI: 10.1007/s10753-014-9891-4

21. Chu Y.T., Liao M.T., Tsai K.W., Lu K.C., Hu W.C. Interplay of Chemokines Receptors, Toll-like Receptors, and Host Immunological Pathways. Biomedicines, 2023, Vol. 11, no. 9, pp. 2384. DOI: 10.3390/biomedicines11092384

22. Cummings R.D., Chiffoleau E., van Kooyk Y., McEver R.P. C-Type Lectins. In: Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G.W., Aebi M., Mohnen D., Kinoshita T., Packer N.H., Prestegard J.H., Schnaar R.L., Seeberger P.H., editors. Essentials of Glycobiology [Internet]. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. Chapter 34. https://www.ncbi.nlm.nih.gov/books/NBK579916/

23. Deng Y.P., Sun J., He Q.Y., Liu Y., Fu L., Zhao H. The value of surfactant protein a in evaluating the severity and prognosis in community-acquired pneumonia patients. BMC Pulm Med, 2024, Vol. 24, no. 1, pp. 472.

24. DOI: 10.1186/s12890-024-03297-y

25. Ding J, Liu Q. Toll-like receptor 4: A promising therapeutic target for pneumonia caused by Gram-negative bacteria. J Cell Mol Med, 2019, Vol., 23, no. 9, pp. 5868-5875. DOI: 10.1111/jcmm.14529

26. Drouin M., Saenz J., Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol, 2020, no. 11, pp. 251. DOI: 10.3389/fimmu.2020.00251

27. Ebell M.H., Bentivegna M., Cai X., Hulme C., Kearney M. Accuracy of Biomarkers for the Diagnosis of Adult Community-acquired Pneumonia: A Meta-analysis. Acad Emerg Med, 2020, Vol. 27, no. 3, pp. 195-206. DOI: 10.1111/acem.13889

28. Endeman H., Herpers B.L., de Jong B.A.W., Voorn G.P., Grutters J.C., van Velzen-Blad H., et al. Mannose-binding lectin genotypes in susceptibility to community-acquired pneumonia. Chest, 2008, Vol. 134, no. 6, pp. 1135-1140. DOI: 10.1378/chest.08-0642

29. Endo Y., Takahashi M., Iwaki D., Ishida Y., Nakazawa N., Kodama T., et al. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. J Immunol, 2012, Vol. 189, no. 12, pp. 5860-5866. DOI: 10.4049/jimmunol.1200836

30. Florin T.A., Ambroggio L., Brokamp C., Zhang Y., Rattan M., Crotty E., et al. Biomarkers and Disease Severity in Children With Community-Acquired Pneumonia. Pediatrics, 2020, Vol. 145, no. 6, pp. e20193728. Erratum in: Pediatrics, 2020, Vol. 146, no. 3, pp. e2020011452. DOI: 10.1542/peds.2020-011452

31. Gao X., Yan X., Zhang Q., Yin Y., Cao J. CD5L contributes to the pathogenesis of methicillin-resistant Staphylococcus aureus-induced pneumonia. Int Immunopharmacol, 2019, no. 72, pp. 40-47. DOI: 10.1016/j.intimp.2019.03.057

32. García-Laorden M.I., Rodríguez de Castro F., Solé-Violán J., Rajas O., Blanquer J., Borderías L., Aspa J., Briones M.L., Saavedra P., Marcos-Ramos J.A., González-Quevedo N., Sologuren I., Herrera-Ramos E., Ferrer J.M., Rello J., Rodríguez-Gallego C. Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study. Crit Care, 2011, Vol. 15, no. 1, pp. R57 DOI: 10.1186/cc10030

33. Geyer C.E., Mes L., Newling M., den Dunnen J., Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells, 2021, Vol. 10, no. 5, pp. 1175. DOI: 10.3390/cells10051175

34. Gonzalez O.A., Kirakodu S., Novak M.J., Stromberg A.J., Orraca L., Gonzalez-Martinez J., Burgos A., Ebersole J.L. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology, 2018, no. 223, pp. 279-287. DOI: 10.1016/j.imbio.2017.10.03

35. Gromelsky Ljungcrantz E., Askman S., Sjövall F., Paulsson M. Biomarkers in lower respiratory tract samples in the diagnosis of ventilator-associated pneumonia: a systematic review. Eur Respir Rev, 2025, Vol. 34, no. 176, pp. 240229. DOI: 10.1183/16000617.0229-2024

36. Hollwedel F.D., Maus R., Stolper J., Khan A., Stocker B.L, Timmer M.S.M., Lu X., Pich A., Welte T., Yamasaki S., Maus U.A. Overexpression of Macrophage-Inducible C-Type Lectin Mincle Aggravates Proinflammatory Responses to Streptococcus pneumoniae with Fatal Outcome in Mice. J Immunol, 2020, Vol. 205. no. 12, pp. 3390-3399. DOI: 10.4049/jimmunol.2000509

37. Kale S.D., Dikshit N., Kumar P., Balamuralidhar V., Khameneh H.J,. Bin Abdul Malik N., et al. Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs. Sci Rep, 2017, Vol. 7, no. 1, pp. 17429. DOI: 10.1038/s41598-017-17653-y

38. Karnaushkina M.A., Guryev A.S., Mironov K.O., Dunaeva E.A., Korchagin V.I., Bobkova O.Y., Vasilyeva I.S., Kassina D.V., Litvinova M.M. Associations of Toll-like Receptor Gene Polymorphisms with NETosis Activity as Prognostic Criteria for the Severity of Pneumonia. Sovrem Tekhnologii Med, 2021, Vol. 13, no. 3, pp. 47-53. DOI: 10.17691/stm2021.13.3.06

39. Kawai T., Ikegawa M., Ori D., Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity. 2024, Vol. 57, no. 4, pp. 649-673. DOI: 10.1016/j.immuni.2024.03.004

40. van Kempen G., Meijvis S., Endeman H., Vlaminckx B., Meek B., de Jong B., Rijkers G., Bos W.J. Mannose-binding lectin and l-ficolin polymorphisms in patients with community-acquired pneumonia caused by intracellular pathogens. Immunology, 2017, Vol. 151, no. 1, pp. 81-88. DOI: 10.1111/imm.12705

41. Kobayashi T., Kuronuma K., Saito A., Ikeda K., Ariki S., Saitou A., Otsuka M., Chiba H., Takahashi S., Takahashi M., Takahashi H. Insufficient serum L-ficolin is associated with disease presence and extent of pulmonary Mycobacterium avium complex disease. Respir Res, 2019, Vol. 20, no. 1, pp. 224. DOI: 10.1186/s12931-019-1185-9

42. Korkmaz F.T., Shenoy A.T., Symer E.M., Baird L.A., Odom C.V., Arafa E.I., Dimbo E.L., Na E., Molina-Arocho W., Brudner M., Standiford T.J., Mehta J.L., Sawamura T., Jones M.R., Mizgerd J.P., Traber K.E., Quinton L.J. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight, 2022, Vol. 7, no. 23, pp. e149955. DOI: 10.1172/jci.insight.149955

43. Kottom T.J., Hebrink D.M., Jenson P.E., Marsolek P.L., Wüthrich M., Wang H., Klein B., Yamasaki S., Limper A.H. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses. Am J Respir Cell Mol Biol, 2018, Vol. 58, no. 2, pp. 232-240. DOI: 10.1165/rcmb.2016-0335OC

44. Li D., Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther, 2021, Vol. 6, no. 1, pp. 291. DOI: 10.1038/s41392-021-00687-0

45. Luo Q., He X., Ning P., Zheng Y., Yang D., Xu Y., Shang Y., Gao Z. Admission Pentraxin-3 Level Predicts Severity of Community-Acquired Pneumonia Independently of Etiology. Proteomics Clin Appl, 2019, Vol. 13, no. 4, pp. 1800117. DOI: 10.1002/prca.201800117

46. Lupfer C.R., Anand P.K., Qi X., Zaki H. Editorial: Role of NOD-Like Receptors in Infectious and Immunological Diseases. Front Immunol, 2020, no. 11, pp. 923. DOI: 10.3389/fimmu.2020.00923

47. Ma L., Li D., Wen Y., Shi D. Advances in understanding the role of pentraxin-3 in lung infections. Front Immunol, 2025, no. 16, pp. 1575968. DOI: 10.3389/fimmu.2025.1575968

48. Olonisakin T.F., Li H., Xiong Z., Kochman E.J., Yu M., Qu Y., Hulver M., Kolls J.K., St Croix C., Doi Y., Nguyen M.H., Shanks R.M., Mallampalli R.K., Kagan V.E., Ray A., Silverstein R.L., Ray P., Lee J.S. CD36 Provides Host Protection Against Klebsiella pneumoniae Intrapulmonary Infection by Enhancing Lipopolysaccharide Responsiveness and Macrophage Phagocytosis. J Infect Dis, 2016, Vol. 214, no, 12, pp. 1865-1875. DOI: 10.1093/infdis/jiw451

49. Pan Q., Chen H., Wang F., Jeza V.T., Hou W., Zhao Y., Xiang T., Zhu Y., Endo Y., Fujita T., Zhang X.L. L-ficolin binds to the glycoproteins hemagglutinin and neuraminidase and inhibits influenza A virus infection both in vitro and in vivo. J Innate Immun, 2012, Vol. 4, no. 3, pp. 312-324. DOI: 10.1159/000335670

50. Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., Hannesschläger N., Schlee M., Rothenfusser S., Barchet W., Kato H., Akira S., Inoue S., Endres S., Peschel C., Hartmann G., Hornung V., Ruland J. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010, Vol. 11, no. 1, pp. 63-69. DOI: 10.1038/ni.1824

51. Saijo S., Fujikado N., Furuta T., Chung S.H., Kotaki H., Seki K., Sudo K., Akira S., Adachi Y., Ohno N., Kinjo T., Nakamura K., Kawakami K., Iwakura Y. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol, 2007, Vol. 8, no. 1, pp. 39-46. DOI: 10.1038/ni1425.

52. Shi G.Q., Yang L., Shan L.Y., Yin L.Z., Jiang W,. Tian H.T., Yang D.D. Investigation of the clinical significance of detecting PTX3 for community-acquired pneumonia. Eur Rev Med Pharmacol Sci, 2020, Vol. 24, no. 16, pp. 8477-8482. DOI: 10.26355/eurrev_202008_22645

53. Shimada K., Chen S., Dempsey P.W., Sorrentino R., Alsabeh R., Slepenkin A.V., Peterson E., Doherty T.M., Underhill D., Crother T.R., Arditi M. The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection. PLoS Pathog, 2009, Vol. 5, no. 4, pp. e1000379. DOI: 10.1371/journal.ppat.1000379

54. Siljan W.W., Holter J.C., Nymo S.H., Husebye E., Ueland T., Skattum L., Bosnes V., Garred P., Frøland S.S., Mollnes T.E., Aukrust P., Heggelund L. Low Levels of Immunoglobulins and Mannose-Binding Lectin Are Not Associated With Etiology, Severity, or Outcome in Community-Acquired Pneumonia. Open Forum Infect Dis, 2018, Vol. 5, no. 2, pp. ofy002 DOI: 10.1093/ofid/ofy002

55. Spoorenberg S.M., Vestjens S.M., Rijkers G.T., Meek B., van Moorsel C.H., Grutters J.C., Bos W.J. YKL-40, CCL18 and SP-D predict mortality in patients hospitalized with community-acquired pneumonia. Respirology, 2017, Vol. 22, no. 3, pp. 542-550. DOI: 10.1111/resp.12924

56. Świerzko A.S., Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol, 2020, no. 11, pp. 585243. DOI: 10.3389/fimmu.2020.585243

57. Taban Q., Mumtaz P.T., Masoodi K.Z., Haq E., Ahmad S.M. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun Signal, 2022, Vol. 20, no. 1, pp. 2. DOI: 10.1186/s12964-021-00812-0

58. Taras R., Capitanescu G., Ionescu M., Cinteza E., Balgradean M. The Prognostic Value of Mannose-Binding Lectin in Community-Acquired Pneumonia. Maedica (Bucur), 2020, Vol. 15, no. 1, pp. 11-17 DOI: 10.26574/maedica.2020.15.1.11

59. Tsuchiya K., Suzuki Y., Yoshimura K., Yasui H., Karayama M., Hozumi H., Furuhashi K., Enomoto N., Fujisawa T., Nakamura Y., Inui N., Yokomura K., Suda T. Author Correction: Macrophage Mannose Receptor CD206 Predicts Prognosis in Community-acquired Pneumonia. Sci Rep, 2020, Vol. 10, no. 1, pp. 3324. DOI: 10.1038/s41598-020-58958-9

60. Wang Z., Wang X., Zou H., Dai Z., Feng S., Zhang M., Xiao G., Liu Z., Cheng Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol, 2020, no. 11, pp. 1757. DOI: 10.3389/fimmu.2020.01757

61. Xiao X., Fu Y., You W., Huang C., Zeng F., Gu X., Sun X., Li J., Zhang Q., Du W., Cheng G., Liu Z., Liu L. Inhibition of the RLR signaling pathway by SARS-CoV-2 ORF7b is mediated by MAVS and abrogated by ORF7b-homologous interfering peptide. J Virol, 2024, Vol. 98, no. 5, pp. e0157323. DOI: 10.1128/jvi.01573-23

62. Xuan S., Ma Y., Zhou H., Gu S., Yao X., Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis, 2023, Vol. 11, no. 6, pp. 101007. DOI: 10.1016/j.gendis.2023.04.036

63. Yoneyama M., Kato H., Fujita T. Physiological functions of RIG-I-like receptors. Immunity, 2024, Vol. 57, no. 4, pp. 731-751. DOI: 10.1016/j.immuni.2024.03.003

64. Zhao M., Tan X., Wu X.. The Role of Ficolins in Lung Injury. J Innate Immun, 2024, Vol. 16, no. 1, pp. 440-450. DOI: 10.1159/000540954.

65. Zhu L., Qi Z., Zhang H., Wang N. Nucleic Acid Sensor-Mediated PANoptosis in Viral Infection. Viruses, 2024, Vol. 16, no. 6, pp. 966. DOI: 10.3390/v16060966


Supplementary files

1. 3328
Subject
Type Other
Download (7MB)    
Indexing metadata ▾

Review

For citations:


Zolotov M.O., Migacheva N.B., Lyamin A.V. PATTERN RECOGNITION RECEPTORS AND THEIR ROLE IN IMMUNOPATHOGENESIS OF PNEUMONIA (LITERATURE REVIEW). Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-PRR-3328

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)