Preview

Медицинская иммунология

Расширенный поиск

НЕДАВНИЕ ТИМИЧЕСКИЕ ЭМИГРАНТЫ КАК КЛЕТОЧНАЯ ОСНОВА ФОРМИРОВАНИЯ ИММУННОГО ГОМЕОСТАЗА

Аннотация

Морфологическую основу гомеостатической иммунной системы составляют лимфоидные и кроветворные органы (костный мозг, тимус, селезенка, лимфатические узлы), а также многочисленные скопления лимфоидных клеток, разбросанных по различным органам и тканям организма. По морфофункциональной значимости их разделяют на центральные (тимуса и костный мозг) и периферические (селезенка и лимфатические узлы с тканевыми скоплениями). Костный мозг является источником таких иммунокомпетентных клеток, как: предшественники тимоцитов, макрофаги, дендритные клетки, В лимфоциты. Единственным местом производства Т лимфоцитов, и только их, является тимус, и только он, один из двух центральных органов иммунной системы. В тимусе, в процессе дифференцировки и пролиферации тимоцитов, в конце концов формируется две популяции Т-клеток, включая Т регуляторные клетки (Treg) и Т-клетки предшественники будущих nТ-клеток на периферии. Главное, что в тимусе не происходит дифференцировки Т-клеток в Т-клетки эффекторных субпопуляций (Th1, Th2, Th3…, в цитотоксические лимфоциты). Это прерогатива периферии.

Однако, прежде чем стать эффекторными клетками на периферии, Т-клетки мигрируют из тимуса и находятся в циркуляции в течение определенного времени, не оседая во вторичных лимфоидных органах. Они как бы уже не тимоциты, но еще не наивные Т-клетки на периферии, они недавние тимические эмигранты (НТЭ). Таким образом, они представляют собой отдельную популяцию Т-клеток, одну из трех макропопуляций Т-клеток, две из которых представляют Т-клетки в тимусе (тимоциты) и наивные Т-клетки на периферии. Причем, клетки всех этих трех макропопуляций отличаются друг от друга по целому ряду морфофункциональных характеристик. Клетки НТЭ становятся объектом оценки их количественных и качественных характеристик. Оказалось, что при многих заболеваниях с иммунопатогенезом, а возможно и при всех, количество НТЭ уменьшается в зависимости от вида заболевания и стадии ее развития. При этом, в отдельных случаях имеются данные об изменении процентного содержания среди НТЭ Treg клеток и других Т-клеток, так же, как и содержания CD4+ и CD8+ Т-клеток. При этом, данные изменения процентного содержания среди НТЭ различных субпопуляций связаны с патогенезом основного заболевания.

Таким образом, кажется несомненной необходимостью разрабатывать комплексные методы количественной и качественной оценки популяции клеток НТЭ в качестве мишеней как диагностики, так и терапии иммунокомпрометированных заболеваний. Можно предположить, что такая оценка ляжет в основу до клинического выявления заболевания и утяжеления его течения.

Об авторе

Владимир Александрович Козлов
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт фундаментальной и клинической иммунологии» (НИИФКИ)
Россия

академик РАН, д.м.н., научный руководитель НИИФКИ, лаборатория клинической иммунопатологии НИИФКИ



Список литературы

1. Adegoke A.O., Thangavelu G., Chou T-F., Petersen M.I., Kakugawa K., May J.F., Joannou K., Wang Q., Ellestad K.K., Boon L., Bretscher P.A., Cheroutre H., Kronenberg M., Baldwin T.A., Anderson C.C. Internal regulation between constitutively expressed T cell co-inhibitory receptors BTLA and CD5 and tolerance in recent thymic emigrants. Open Biol., 2024, 14(10), 240178.

2. Allende M.L., Dreier J.L., Mandala S., Proia R.L. Expression of the Sphingosine 1-Phosphate Receptor, S1P1, on T-cells Controls Thymic Emigration. J Biolog Chemistry, 2004; 279, 15, pp. 15396–15401.

3. Bains I., Yates A.J., Callard R.E. Heterogeneity in Thymic Emigrants: Implications for Thymectomy and Immunosenescence. PLoS One, 2013; 8(2), e49554

4. Bamoulid J., Courivaud C., Crepin T., Carron C., Gaiffe E., Roubiou C., Moulin L.C.B., Frimat L., Rieu P., Mousson C., Durrbach A., Heng A.-E., Rebibou J.-M., Saas P., Ducloux D. Pretransplant thymic function predicts acute rejection in antithymocyte globulin–treated renal transplant recipients. Kidney International, 2016, 89, pp.1136–1143

5. Batorov E.V., Tikhonova M.A., Kryuchkova I.V., Sergeevicheva V.V., Sizikova S.A., Ushakova G.Y., Batorova D.S., Gilevich A.V., Ostanin A.A., Shevela E.Y., Chernykh E.R. CD4+ memory T cells retain surface expression of CD31 independently of thymic function in patients with lymphoproliferative disorders following autologous hematopoietic stem cell transplantation. Int. J Hematol., 2017, Vol. 106, no. 1, pp. 108–115.

6. Beattie B., Cole D., Nicholson L., Leech S., Taylor A., Robson H., Guest J., Wang X.N., Gennery A.R. Limited thymic recovery after extracorporeal photopheresis in a low-body-weight patient with acute graft-versus-host disease of the skin. J Allergy Clin Immunol., 2016, Vol. 137(6), pp. 1890-1893.e1.

7. Bhaumik S., Giffon T., Bolinger D., Bolinger D., Kirkman R., Lewis D.B., Weaver C.T., Randolph D.A. Retinoic acid hypersensitivity promotes peripheral tolerance in recent thymic emigrants. J Immunol., 2013, Vol. 190(6), pp. 2603-2613.

8. Bona R., Macchia I., Baroncelli S., Negri D.R.M., Leone P., Pavone-Cossut M.R., Catone S., Buffa V., Ciccozzi M., Heeney J., Fagrouch Z., Titti F., Cara A. T cell receptor excision circles (TRECs) analysis during acute intrarectal infection of cynomolgus monkeys with pathogenic chimeric simian human immunodeficiency virus. Virus Res., 2007, Vol. 126(1-2), pp. 86-95.

9. Boursalian T.E., Golob J., Soper D.M., Cooper C.J., Fink P.J. Continued maturation of thymic emigrants in the periphery. Nature Immunology, 2004, Vol. 5, pp. 418–425.

10. Carrasco E., Gomez de Las Heras M.M., Gabande-Rodriguez E., Desdin Mico G., Aranda J.F., Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol., 2022, Vol. 22, no. 2, pp. 97–111.

11. Chan A.Y., Anderson M.S. Central tolerance to self revealed by the autoimmuneregulator. Ann. N.Y. Acad. Sci., 2015, Vol. 1356, pp. 80–89.

12. Cho S., Seo H.J., Lee J.H., Kim M.Y., Lee S.D. Influence of immunologic status on age prediction using signal joint Tcell receptor excision circles. Int J Legal Med, 2017; Vol. 131, pp. 1061–1067.

13. Chopp L., Redmond C., O’Shea J.J., Schwartz D.M. From thymus to tissues and tumors: a review of T cell biology. J Allergy Clin Immunol., 2023, Vol. 151, no. 1, pp. 81-97.

14. Clave E., Lisini D., Douay C., Giorgiani G., Busson M., Zecca M., Charron D., Bernardo M. E., Toubert A., & Locatelli F. A low thymic function is associated with leukemia relapse in children given T-cell-depleted HLA-haploidentical stem cell transplantation. Leukemia, 2012, Vol. 26, no. 8, pp. 1886-1888.

15. Courivaud C., Bamoulid J., Crepin T., Gaiffe E., Laheurte C., Saas P., & Ducloux D. Pretransplant thymic function predicts is associated with patient death after kidney transplantation. Front Immunol., 2020, Vol. 11, pp. 1653.

16. Cunningham C.A.; Helm E.Y.; Fink P.J. Reinterpreting recent thymic emigrant function: Defective or adaptive? Curr. Opin. Immunol., 2018, Vol. 51, pp.1–6.

17. De Souza Nogueira J., Gomes T.R., Secco D.A., Silva de Almeida I. , da Costa A.S.M.F., Cobas R.A., dos Santos Jr.G.C., Gomes M.B., Porto L.C. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulator CD4+CD25+Foxp3+T cells. Immunology Letters, 2024, Vol. 267, 106857.

18. Dei Zotti F., Moriconi C., Qiu A., Miller A., Hudson K.E. Distinct CD4+ T cell signature in ANA-positive young adult patient. Front Immunol., 2022, Vol. 13, 972127.

19. Dion M.L., Poulin J.F., Bordi R., Sylvestre M., Corsini R., Kettaf N., Dalloul A., Boulassel M.R., Debré P., Routy J.P., Grossman Z., Sékaly R.P., Cheynier R. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity, 2004, Vol. 21, no. 6, pp. 757-68.

20. Dominguez-Villar M., Hafler D.A. Regulatory T cells in autoimmune disease. Nat Immunol., 2018, Vol. 19, pp. 665–673.

21. Douek D.C., McFarland R.D., Keiser P.H., Gage E.A., Massey J.M., Haynes B.F., Polis M.A., Haase A.T., Feinberg M.B., Sullivan .JL., Jamieson B.D., Zack J.A., Picker L.J., Koup R.A. Changes in thymic function with age and during the treatment of HIV Infection. Nature, 1998, Vol. 396, no. 6712, pp. 690-695.

22. Dragin N., Bismuth J., Cizeron-Clairac G., Biferi M.G., Berthault C., Alain Serraf A., Nottin R., Klatzmann D., Cumano A., Barkats M., Le Panse R., Berrih-Aknin S. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest, 2016, Vol. 126, no. 4, pp. 1525-1537.

23. Duszczyszyn D.A., Williams J.L., Mason H., Lapierre Y., Antel J., Haegert D.G. Thymic involution and proliferative T-cell responses in multiple sclerosis. J Neuroimmunol., 2010, Vol. 221, no. 1-2, pp. 73-80.

24. Elgbratt K., Kurlberg G., Hahn-Zohric M., Hörnquist E.H. Rapid migration of thymic emigrants to the colonic mucosa in ulcerative colitis patients. Clin Exp Imunol, 2010, Vol. 162, no. 2, pp. 325–336.

25. Falci C., Gianesin K., Sergic G., Giunco S., De Ronchc I., Valpione S., Soldàe C., Fiducciae P., Lonardie S., Zanchetta M., Keppeld S., Brunelloe A., Zafferri V., Manzatoc E., De Rossi A., Zagonele V. Immune senescence and cancer in elderly patients: Results from an exploratory study. Experimental Gerontology, 2013, Vol. 48, no. 12, pp. 1436–1442.

26. Fink P.J., Hendricks D.W. Post-thymic maturation: young T cells assert their individuality. Nat Rev Immunol., 2011, Vol. 11, no. 8, pp. 544–549.

27. Flaherty K.R., Kucykowicz S., Schroth J., Traves W., Mincham K.T., Finney G.E. Efficacy of PD-1 checkpoint inhibitor therapy in melanoma and beyond: are peripheral T cell phenotypes the key? Immunother Adv., 2023, Vol. 3, no. 1, ltad026.

28. Fontenot J.D., Dooley J.L., Farr A.G., Rudensky A.Y. Developmental regulation of Foxp3 expression during ontogeny. J Exp Med, 2005, Vol. 202, no. 7, pp. 901-906.

29. Friesen T.J., Ji Q., Fink P.J. Recent thymic emigrants are tolerized in the absence of inflammation. J. Exp. Med., 2016, Vol. 213, no. 6, pp. 913–920.

30. Fukuhara S., Simmons S., Kawamura S., Inoue A., Orba Y., Tokudome T., Sunden Y., Arai Y., Moriwaki K., Ishida J., Uemura A., Kiyonari H., Abe T., Fukamizu A., Hirashima M., Sawa H., Aoki J., Ishii M., Mochizuki N. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Investig., 2012, Vol. 122, no. 4, pp. 1416–1426.

31. Giunco S., Petrara M.R., Bergamo F., Del Bianco P., Zanchetta M., Carmona F., Zagonel V., De Rossi A., Lonardi S. Immune senescence and immune activation in elderly colorectal cancer Patients. Aging, 2019, Vol. 11, no. 11, pp. 3864-3875.

32. Grom A.A., Hirsch R. T-cell and T-cell receptor abnormalities in the immunopatho genesis of juvenile rheumatoid arthritis. Curr Opin Rheumatol., 2000, Vol. 12, no. 5, pp. 420-424.

33. Haas J., Fritzsching B., Trübswetter P., Korporal M., Milkova L., Fritz B., Vobis D., Krammer P.H., Suri-Payer E., Wildemann B. Prevalence of Newly Generated Naive Regulatory T Cells (Treg) Is Critical for Treg Suppressive Function and Determines Treg Dysfunction in Multiple Sclerosis. J Immunol., 2007, Vol. 179, no. 2, pp. 1322–1330.

34. Haegert D.G., Hackenbroch J.D., Duszczyszyn D., Fitz-Gerald L., Zastepa E., Mason H., Lapierre Y., Antel J., Bar-Or A. Reduced thymic output and peripheral naïve CD4 T-cell alterations in primary progressive multiple sclerosis (PPMS). J Neuroimmunol., 2011, Vol. 233, no. 1-2, pp. 233-239.

35. Hale J.S., Boursalian T.E., Turk G.L., Fink P.J. Thymic output in aged mice. PNAS, 2006, Vol. 103, no. 22, pp. 8447-8452.

36. Hendricks D.W., Fink P.J. Recent thymic emigrants are biased against the T-helper type 1 and toward T-helper type 2 effector lineage. Blood, 2011, Vol. 117, no. 4, pp. 1239–1249.

37. Hilt Z.T., Reynaldi A., Steinhilber M., Zhang S., Wesnak S.P., Smith N.L., Davenport M.P., Rudd B.D. Recent thymic emigrants are preferentially recruited into the memory pool during persistent infection. bioRxiv [Preprint], 2025, 2025.02.06.636722.

38. Hiroki H., Moriya K., Uchiyama T., Hirose F., Endo A., Sato .I, Tomaru Y., Sawakami K., Shimizi N., Ohnishi H., Morio T., Imai K. A high-throughput TREC- and KREC-based newborn screening for severe inborn errors of immunity. Pediatr Int, 2015, Vol. 67, no. 1, e15872.

39. Horvath D., Kayser C., Silva C.A.A., Terreri M.T., Hilário M.O., Andrade L.E. Decreased recent thymus emigrant number in rheumatoid factor-negative polyarticular juvenile idiopathic arthritis. Clinical and Experimental Rheumatology, 2010, Vol. 28, no. 3, pp. 348-353.

40. Houston E.G., Fink P.J. MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants. J Immunol., 2009, Vol. 183, no. 11, pp. 7244–7249.

41. Hsu F.-C., Pajerowski A.G., Nelson-Holte M., Sundsbak R., Shapiro V.S. NKAP is required for T cell maturation and acquisition of functional competency. J. Exp. Med., 2011, Vol. 208, no. 6, pp. 1291-1304.

42. Hug A., Korpora M., Schroder I., Haas J., Glatz K., Storch-Hagenlocher B., Wildemann B. Thymic Export Function and T Cell Homeostasis in Patients with Relapsing Remitting Multiple Sclerosis. J Immunol., 2003, Vol. 171, no. 1, pp. 432–437.

43. Iio K., Kabata D., Iio R., Shibamoto S., Watanabe Y., Morita M., Imai Y., Hatanaka M., Omori H., Isaka Y. Decreased thymic output predicts progression of chronic kidney disease. Immunity & Ageing, 2023, Vol. 20, no. 1, 8.

44. Itakura T., Sasaki H., Hosoya T., Umezawa N., Saito T., Iwai H., Hasegawa H., Sato H., Hirakawa A., Imai K., Morio T., Kimura N., Yasuda S. The role of TRECs/KRECs as immune indicators that reflect immunophenotypes and predict the risk of infection in systemic autoimmune diseases. Immunological medicine, 2025, Vol. 48, no. 3, pp. 233-244.

45. Jin R., Zhang J., Chen W. Thymic Output: Influence Factors and Molecular Mechanism. Cell Mol Immunol., 2006, Vol. 3, no. 5, pp. 341-350.

46. Junge S., Kloeckener-Gruissem B., Zufferey R., Keisker A., Salgo B., Fauchere J. C., Scherer F., Shalaby T., Grotzer M., Siler U., Seger R., Güngör T. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. European journal of immunology, 2007, Vol. 37, no. 11, pp. 3270–3280.

47. Just H.L., Deleuran M., Vestergaard C., Deleuran B., Thestrup-Pedersen K. T-cell Receptor Excision Circles (TREC) in CD4+ and CD8+ T-cell Subpopulations in Atopic Dermatitis and Psoriasis Show Major Differences in the Emission of Recent Thymic emigrants. Acta dermato-venereologica, 2008, Vol. 88, no. 6, pp. 566–572.

48. Kaminskj H.J., Kusner L.L., Cutter G.R., Le Panse R., Wright C.D., Perry Y., Wolfe G.I. Does surgical removal of the thymus have deleterious consequences? Neurology, 2024, Vol. 102, no. 12, e209482.

49. Kim H.K., Waickman A.T., Castro E., Flomerfelt F.A., Hawk N.V., Kapoor V., Telford W.G., Gress R.E. Distinct IL-7 signaling in recent thymic emigrants versus mature naïve T cells controls T-cell homeostasis. Eur J Immunol., 2016, Vol. 46, no. 7, pp. 1669–1680.

50. Kuss I., Schaefer C., Godfrey T.E., Ferris R.E., Harris J.M., Goodimg W., Whiteside T.L. Recent thymic emigrants and subsets of naive and memory T cells in the circulation of patients with head and neck cancer. Clinical Immunology, 2005, Vol. 116, no. 1, pp. 27-36.

51. Li J., Li Y., Yao J.-Y., Jin R., Zhu M. Z., Qian X. P., Zhang J., Fu Y. X., Wu L., Zhang Y., Chen W. F. Developmental pathway of CD4+CD8- medullary thymocytes during mouse ontogeny and its defect in Aire-/- mice. Proc Natl Acad Sci., 2007, Vol. 104, no. 46, pp. 18175-18180.

52. Li Y., Geng S., Yin Q., Chen S., Yang L., Wu X., Li B., Du X., Schmidt C.A., Przybylski G.K. Research Open Access Decreased level of recent thymic emigrants in CD4+ and CD8+Tcells from CML patient. J Transl Med., 2010, Vol. 8, Article number 47.

53. Lorenzi A.R., Morgan T.A., Anderson A., Catterall J., Patterson A.M., Foster H.E., Isaacs J.D. Thymic function in juvenile idiopathic arthritis. Ann Rheum Dis., 2009, Vol. 68, no. 6, pp. 983–990.

54. Lorenzini M., Toldi G. The Proportion of Recent Thymic Emigrant Lymphocytes in Breastfed and Formula Fed Term Neonates. Nutrients, 2023, Vol. 15, no. 4, 1028.

55. Massengill S.F., Goodeneow M.M., Sleasman J.W. SLE nephritis is associated with an oligoclonal expansion of intrarenal T cells. Am J Kidney Dis., 1998, Vol. 31:, no. 3, pp. 418-426.

56. Matloubian M., Lo C.G., Cinamon G., Lesneski M.J., Xu Y., Brinkmann V., Allende M. L., Proia R. L., Cyster, J. G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 2004, Vol. 427, pp. 355–360.

57. Min H., Montecino-Rodriguez E., Dorshkind K. Reduction in the Developmental Potential of Intrathymic T Cell Progenitors with Age. J Immunol, 2004, Vol. 73, no. 1, pp. 245–250.

58. Minaduola M., Aili A., Bao Y., Peng Z., Ge Q., Jin R. The circadian clock sets a spatial–temporal window for recent thymic Emigrants. Immunology & Cell Biology, 2022, Vol. 100, no. 9, pp. 731–741.

59. Oh J., Wang W., Thomas R., Su D.-M. Capacity of tTreg generation in not impaired in the atrophied thymus. Plos Biol., 2017, Vol. 15, no. 11, e2003352.

60. Onji M., Penninger J.M. RANKL and RANK in cancer Therapy. Physiology, 2023, Vol. 38, no. 3, pp. 110-124.

61. Opiela S.J., Koru-Sengul T., Adkins B. Murine neonatal recent thymic emigrants are phenotypically and functionally distinct from adult recent thymic emigrants Blood, 2009, Vol. 113, no. 22, pp. 5635–5643.

62. Paiva R.S., Linoa A.C., Bergmana M.-L., Caramalhob I., Sousab A.E., Zelenaya S., Demengeota J. Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U S A, 2013, Vol. 110, no. 6, pp. 6494-6499.

63. Petridou E., Klimentopoulou A.E., Moustaki M., Kostrikis L.G., Hatzakis A., Trichopoulos D. Recent thymic emigrants and prognosis in T- and B-cell childhood hematopoietic malignancies. Int J Cancer, 2002, Vol, 101, no. 1, pp. 74-77.

64. Pido-Lopez J., Imami N., Aspinall R. Both age and gender affect thymic output: more recent thymic migrants in Females than males as they age. Clin Exp Immunol, 2001, Vol. 125, no. 3, pp. 409-413.

65. Priyadharshini B., Welsh R.M., Greiner D.L., Gerstein R.M., Brehm M.A. Maturation-dependent licensing of naive T cells for rapid TNF production. PloS One, 2010, Vol. 5, no. 11, e15038.

66. Resop R.S., Douaisi M., Craft J., Jachimowski L.C., Blom B., Uittenbogaart C.H. Sphingosine-1 phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery. J Allergy Clin Immunol., 2016, Vol. 138, no. 2, pp. 551–557.

67. Roux H.M., Marouf A., Dutrieux J., Charmeteau-DeMuylder B., Figueiredo-Morgado S., Avettand-Fenoel V., Cuvelier P., Naudin C., Bouaziz F., Geri G., Couëdel-Courteille A., Squara P., Marullo S., Cheynier R. Genetically determined thymic function affects strength and duration of immune response in COVID-19 patients with pneumonia. Sci Adv., 2023, Vol. 9, no. 38, eadh7969.

68. Sannier A., Stroumza N., Caligiuri G., Le Borgne-Moynier M., Andreata F., Senemaud J., Louedec L., Even G., |Gaston A.T., Deschildre C., Couvelard A., Ou P., Cheynier R., Nataf P., Dorent R., Nicoletti A. Thymic function is a major determinant of onset of antibody- mediated rejection in heart transplantation. Am J Transplant., 2018, Vol. 18, no. 4, pp. 964–971.

69. Scheible K.M., Emo J., Laniewski N., Baran A.M., Peterson D.R., Holden-Wiltse J., Bandyopadhyay S., Straw A.G., Huyck H., Ashton J.M., Tripi K.S., Arul K., Werner E., Scalise T., Maffett D., Caserta M., Ryan R.M., Reynolds A.M., Ren C.L., Topham D. J., Pryhuber G.S. T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy. JCI Insight 2018, Vol. 3, no. 4, e96724.

70. Shiow L.R., Roadcap D.W., Paris K., Watson S.R., Grigorova I.L., Lebet T., An J., Xu Y., Jenne C.N., Föger N., Sorensen R.U., Goodnow C.C., Bear J.E., Puck J.M., Cyster J.G. The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nat. Immunol., 2008, Vol. 9, no. 11, pp. 1307–1315.

71. Steffens C.M., Al-Harthi L., Shott S., Yogev R., Landay A. Evaluation of thymopoiesis using T cell receptor excision circles (TRECs): differential correlation between adult and pediatric TRECs and naïve phenotypes. Clin Immunol., 2000, Vol. 97, no. 2, pp. 95-101.

72. Steinmann G.G., Klaus B., Muller-Hermelink H.K. The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol., 1985, Vol. 22, no. 5, pp. 563–575.

73. Sun L., Su Y., Jiao A., Wang X., Zhang B. T cells in health and disease. Signal Transduction and Targeted Therapy, 2023, Vol. 8, no. 1, 235.

74. Svaldi M., Lanthaler A.J., Dugas M., Lohse P., Pescosta N., Straka C., Mitterer M. T-cell receptor excision circles: a novel pronostic parameter for the outcome of transplantation in multiple myeloma patients. Br J Haematol., 2003, Vol. 122, no. 5, pp. 795–801.

75. Thangavelu G., Parkman J.C., Ewen C.L., Uwiera R.R., Baldwin T.A., Anderson C.C. Programmed death-1 is required for systemic self-tolerance in newly generated T cells during the establishment of immune homeostasis. J. Autoimmun., 2011, Vol. 36, no. 3-4, pp. 301–312.

76. Thiault N., Darrigues J., Adoue V., Gros M., Binet B., Perals C., Leobon B., Fazilleau N., Joffre O.P., Robey E.A., van Meerwijk J.P., Romagnoli P. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Immunol., 2015, Vol. 16, no. 6, pp. 628-634.

77. Tong Q., Yao L., Su M., Yang Y.-G., Sun L. Thymocyte migration and emigration. Immunology Letters, 2024, Vol. 267, 106861.

78. Toubert A., Glauzy S., Douay C., Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens, 2012, Vol. 79, no. 2, pp. 83–88.

79. Tsai H.C., Han M.H. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 2016, Vol. 76, no. 11, pp. 1067–1079.

80. van den Broek T., Borghans J.A.M., van Wijk F. The full spectrum of human naive T cells. Nature Reviews. Immunology, 2018, Vol. 18, no. 6, pp. 365-373.

81. van den Broek T., Delemarre E.M., Janssen W.J.M., Nievelstein R.A.J., Broen J.C., Tesselaar K., Borghans J.A.M., Nieuwenhuis E.E.S., Prakken B.J., Mokry M., Jansen N.J.G., van Wijk F. Neonatal thymectomy reveals differentiation and plasticity within human naive T cell. J Clin Invest., 2016, Vol. 126, no. 3, pp. 1126-1136.

82. Vieira Q.F., Kayser C., Kallas E.G., Andrade L.E.C. Decreased Recent Thymus Emigrant Number Is Associated with Disease Activity in Systemic Lupus Erythematosus. J Rheumatol., 2008, Vol. 35, no. 9, pp. 1762-1767.

83. Wagner M.I., Jöst M., Spratte J., Schaier M., Mahnke K., Meuer S., Zeier M., Steinborn A. Differentiation of ICOS+ and ICOS- recent thymic emigrant regulatory T cells (RTE T regs) during normal pregnancy, pre-eclampsia and HELLP syndrome. Clin Exp Immunol., 2016, Vol. 183, no. 1, pp. 129-142.

84. Wagner M.I., Mai C., Schmitt,E., Mahnke K., Meuer S., Eckstein V., Ho A.D., Schaier M., Zeier M., Spratte J., Fluhr H., Steinborn A. The role of recent thymic emigrant-regulatory T-cell (RTE-Treg) differentiation during pregnancy. Immunol Cell Biol, 2015, Vol. 93, no. 10, pp. 858-867.

85. Wagner U., Schatz A., Baerwald C., Rossol M. Deficient Thymic Output in Rheumatoid Arthritis Despite Abundance of Prethymic Progenitors. Arthritis & Rheuatism, 2013, Vol. 65, no. 10, pp. 2567–2572.

86. Wagner U.G., Koetz K., Weyand C.M., Goronzy J.J. Perturbation of the T cell repertoire in rheumatoid arthritis. ULF G Proc. Natl. Acad. Sci. USA, 1998, Vol. 95, no. 24, pp. 14447-14452.

87. Wang T.W., Johmura Y., Suzuki N., Omori S., Migita T., Yamaguchi K., Hatakeyama S., Yamazaki S., Shimizu E., Imoto S., Furukawa Y., Yoshimura A., Nakanishi M. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature, 2022, Vol. 611, no. 7935, pp. 358-364.

88. Westera L., van Hoeven V., Drylewicz J., Spierenburg G., van Velzen J.F., de Boer R.J., Tesselaar K., Borghans J. A. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell, 2015, Vol. 14, no. 2, pp. 219–227.

89. Wong A.S.L., Gruber D.R., Richards A.L., Sheldon K., Qiu A., Hay A., Hudson K.E. Tolerization of recent thymic emigrants is required to prevent RBC-specific autoimmunity. J Autoimmun., 2020, Vol. 114, 102489.

90. Wood H., Acharjee A., Pearce H., Quraishi M.N., Powell R., Rossiter A., Beggs A., Ewer A., Moss P., Toldi G. Breastfeeding promotes early neonatal regulatory T-cell expansion and immune tolerance of non-inherited maternal antigens. Allergy, 2021, Vol. 76, no. 8, pp. 2447–2460.

91. Xu X., Ge Q. Maturation and migration of murine CD4 single positive thymocytes and thymic emigrants. Computational Structural Biotechnol J., 2014, Vol. 9, e201403003.

92. Xu X., Zhang S., Li P., Lu J., Xuan Q., Ge Q. Maturation and Emigration of Single-Positive Thymocytes. Clinical and Developmental Immunology, 2013, Article ID 282870.

93. Zhang S.L., Bhandoola A. Trafficking to the thymus In: Boehm, T., Takahama, Y. (eds) Thymic Development and Selection of T Lymphocytes. Current Topics in Microbiology and Immunology, vol 373. Springer, Berlin, Heidelberg., 2013, pp. 87–111.

94. Zhao Y., Alard P., Kosiewicz M.M. High Thymic Output of Effector CD4+ Cells May Lead to a Treg : T Effector Imbalance in the Periphery in NOD Mice. J Immunol Res., 2019, Article ID 8785263.

95. Zoller A.L., Schnell F.J., Kersh G.J. Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology, 2007, Vol. 121, no. 2, pp. 207-215.


Дополнительные файлы

Рецензия

Для цитирования:


Козлов В.А. НЕДАВНИЕ ТИМИЧЕСКИЕ ЭМИГРАНТЫ КАК КЛЕТОЧНАЯ ОСНОВА ФОРМИРОВАНИЯ ИММУННОГО ГОМЕОСТАЗА. Медицинская иммунология.

For citation:


Kozlov V.A. RECENT THYMIC EMIGRANTS AS A CELLULAR BASIS FOR THE FORMATION OF IMMUNE HOMEOSTASIS. Medical Immunology (Russia). (In Russ.)

Просмотров: 2


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)