Preview

Medical Immunology (Russia)

Advanced search

Clinical and immunological features of PD-1 and Tim-3 expression on monocytes in axial spondyloarthritis

https://doi.org/10.15789/1563-0625-CAI-3260

Abstract

Regulation of inflammation events in inflammatory/autoimmune rheumatic diseases, particularly axial spondyloarthritis, is critically important for alleviating clinical symptoms. Recent studies have shown the key role of PD-1 and Tim-3 inhibitory receptors in regulating the functional phenotype of monocytes in inflammatory/autoimmune diseases. The aim of this study was to investigate the expression of the PD-1 and Tim-3 inhibitory receptors in different subsets of monocytes in patients with axial spondyloarthritis (axSpA), and to evaluate their association with clinical features, as well as with tolerogenic marker Mer tyrosine kinase (MerTK). The expression of PD-1 and Tim-3 in classical, intermediate, and non-classical monocytes was determined by means of multicolor flow cytometry in peripheral blood mononuclear cells in 60 patients with axial spondyloarthritis and 40 healthy donors. The analysis of circulating monocyte subpopulations revealed an increased proportion of classical monocytes in patients, which positively correlated with systemic inflammation markers: erythrocyte sedimentation rate and C-reactive protein. Like as in donor group, the highest expression of PD-1 and Tim-3 in axSpA patients was observed in intermediate and non-classical monocyte subsets. However, the relative proportions of PD-1+ and PD-1+Tim-3+ cells in intermediate and non-classical monocytes were significantly decreased in axSpA patients, whereas Tim-3 expression levels did not differ from the donor values. Notably, the proportion of PD-1+ cells directly correlated with expression of MerTK, a factor mediating the anti-inflammatory activity of monocytes/macrophages in all monocyte subsets. A statistically significant decrease in PD-1 expression and co-expression of PD-1 and Tim-3 was detected in HLA-B27 antigen carriers, patients with advanced and late-stage disease, and those with peripheral axSpA, including hip joint involvement. On the contrary, in HLA-B27-negative patients and those with early/non-radiographic stage disease, PD-1 expression was comparable to donor levels, while Tim-3+ cell contents were increased among classical monocytes. In patients receiving first-line therapy, the decreased PD-1 expression and PD-1+Tim-3+ co-expression directly correlated with disease activity. The obtained data that include a reduced PD-1 expression and PD-1+Tim-3+ co-expression in intermediate and non-classical monocytes in patients with genetic predisposition, advanced disease stages, and peripheral joint involvement, as well as the association between PD-1+ cell number and MerTK expression in all monocyte subsets, suggest a dysregulation of inhibitory checkpoint receptor expression under inflammatory conditions. These findings could presume a diminished anti-inflammatory capacity of monocytes.

About the Authors

E. Ya. Shevela
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, MD (Medicine), Leading Researcher, Laboratory of Cellular Immunotherapy



L. V. Sakhno
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunotherapy



M. A. Tikhonova
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunotherapy



T. V. Tyrinova
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, MD (Biology), Leading Researcher, Laboratory of Cellular Immunotherapy



A. Yu. Morenkova
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Laboratory Research Assistant



O. A. Chumasova
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD (Medicine), Rheumatologist



N. A. Ilina
Research Institute of Fundamental and Clinical Immunology
Russian Federation

Rheumatologist



N. S. Shkaruba
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD (Medicine), Rheumatologist



Yu. D. Kurochkina
Research Institute of Clinical and Experimental Lymрhology, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD (Medicine), Rheumatologist



A. V. Fedorova
Research Institute of Clinical and Experimental Lymрhology, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Rheumatologist



V. O. Omelchenko
Research Institute of Clinical and Experimental Lymрhology, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD (Medicine), Rheumatologist



E. A. Letyagina
Research Institute of Clinical and Experimental Lymрhology, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD (Medicine), Head, Rheumatology Department, Rheumatologist



M. A. Korolev
Research Institute of Clinical and Experimental Lymрhology, Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD, MD (Medicine), Head



A. E. Sizikov
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD (Medicine), Head, Rheumatology Department, Rheumatologist



E. R. Chernykh
Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Cellular Immunotherapy



References

1. Akhtari M., Vojdanian M., Javinani A., Ashraf-Ganjouei A., Jamshidi A., Mahmoudi M. Activation of adenosine A2A receptor induced interleukin-23 mRNA expression in macrophages of ankylosing spondylitis patients. Cytokine, 2020, Vol. 128, 154997. doi: 10.1016/j.cyto.2020.154997

2. Benjamin M., McGonagle D. Basic concepts of enthesis biology and immunology. J. Rheumatol. Suppl., 2009, Vol. 83, pp. 12-13.

3. Bollow M., Fischer T., Reisshauer H., Backhaus M., Sieper J., Hamm B., Braun J. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis – cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann. Rheum. Dis., 2000, Vol. 59, no. 2, pp. 135-140.

4. Brom V.C., Burger C., Wirtz D.C., Schildberg F.A. The Role of immune checkpoint molecules on macrophages in cancer, infection, and autoimmune pathologies. Front. Immunol., 2022, Vol. 13, 837645. doi: 10.3389/fimmu.2022.837645.

5. Chavanisakun C., Keawvichit R., Benjakul N. M1 and M2 Macrophage polarization correlates with activity and chronicity indices in lupus nephritis. Life, 2025, Vol. 15, no. 1, 55. doi: 10.3390/life15010055.

6. Coates L.C., Marzo-Ortega H., Bennett A.N., Emery P. Anti-TNF therapy in ankylosing spondylitis: insights for the clinician. Ther. Adv. Musculoskelet. Dis., 2010, Vol. 2, no. 1, pp. 37-43.

7. Colbert R.A., Tran T.M., Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol., 2014, Vol. 57, no. 1, pp. 44-51.

8. Conrad K., Wu P., Sieper J., Syrbe U. In vivo pre-activation of monocytes in patients with axial spondyloarthritis. Arthritis Res. Ther., 2015, Vol. 17, no. 1, 179. doi: 10.1186/s13075-015-0694-2.

9. De Rycke L., Vandooren B., Kruithof E., de Keyser F., Veys E.M., Baeten D. Tumor Necrosis Factor α Blockade Treatment Down-Modulates the Increased Systemic and Local Expression of Toll-like Receptor 2 and Toll-like Receptor 4 in Spondylarthropathy. Arthritis Rheum., 2005, Vol. 52, pp. 2146-2158.

10. Fadini G.P., Cappellari R., Mazzucato M., Agostini C., Vigili de Kreutzenberg S., Avogaro A. Monocyte-macrophage polarization balance in pre-diabetic individuals. Acta Diabetol., 2013, Vol. 50, no. 6, pp. 977-982.

11. Fukui S., Iwamoto N., Takatani A., Igawa T., Shimizu T., Umeda M., Nishino A., Horai Y., Hirai Y., Koga T., Kawashiri S.Y., Tamai M., Ichinose K., Nakamura H., Origuchi T., Masuyama R., Kosai K., Yanagihara K., Kawakami A. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front. Immunol., 2018, Vol. 8, 1958. doi:10.3389/fimmu.2017.01958.

12. Funes S.C., Rios M., Escolar-Vera J., Kalergis A.M. Implications of macrophage polarization in autoimmunity. Immunology, 2018, Vol. 154, pp. 186-195.

13. Gu J., Märker-Hermann E., Baeten D., Tsai W.C., Gladman D., Xiong M., Deister H., Kuipers J.G., Huang F., Song Y.W., Maksymowych W., Kalsi J., Bannai M., Seta N., Rihl M., Crofford L.J., Veys E., De Keyser F., Yu D.T. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology, 2002, Vol. 41, no. 7, pp. 759-766.

14. Gulino G.R., Van Mechelen M., Lories R. Cellular and molecular diversity in spondyloarthritis. Semin. Immunol., 2021, Vol. 58, 101521. doi: 10.1016/j.smim.2021.101521.

15. Hirose S., Lin Q., Ohtsuji M., Nishimura H., Verbeek J.S. Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int. Immunol., 2019, Vol. 31, no. 11, pp. 687-696.

16. Huang X., He Y., Yi G., Zheng S., Deng W., Chen S., Zhu R., Wang Y., Chen J., Zheng C., Huang Z., Li T. Expression of Tim-3 on neutrophils as a novel indicator to assess disease activity and severity in ankylosing spondylitis. Front. Med., 2025, Vol. 12, 1530077. doi: 10.3389/fmed.2025.1530077.

17. Li X., Chen Y., Liu X., Zhang J., He X., Teng G., Yu D. Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. Int. Immunopharmacol., 2017, Vol. 44, pp. 153-159.

18. Ma W.T., Gao F., Gu K., Chen D.K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front. Immunol., 2019, Vol. 10, 1140. doi: 10.3389/fimmu.2019.01140.

19. Martinez-Ramos S., Rafael-Vidal C., Pego-Reigosa J.M., Garcia S. Monocytes and macrophages in spondyloarthritis: functional roles and effect of current therapies. Cells, 2022, Vol. 11, 515. doi: 10.3390/cells11030515.

20. Mathieu A., Paladini F., Vacca A., Cauli A., Fiorillo M.T., Sorrentino R. The interplay between the geographic distribution of HLA-B27 alleles and their role in infectious and autoimmune diseases: a unifying hypothesis. Autoimmun. Rev., 2009, Vol. 8, no. 5, pp. 420-425.

21. McGarry T., Hanlon M.M., Marzaioli V., Cunningham C.C., Krishna V., Murray K., Hurson C., Gallagher P., Nagpal S., Veale D.J., Fearon U. Rheumatoid arthritis CD14 + monocytes display metabolic and inflammatory dysfunction, a phenotype that precedes clinical manifestation of disease. Clin. Transl. Immunology, 2021, Vol. 10, no. 1, e1237. doi: 10.1002/cti2.1237.

22. Ranganathan V., Gracey E., Brown M.A., Inman R.D., Haroon N. Pathogenesis of ankylosing spondylitis – recent advances and future directions. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 6, pp. 359-367.

23. Raptopoulou A.P., Bertsias G., Makrygiannakis D., Verginis P., Kritikos I., Tzardi M., Klareskog L., Catrina A.I., Sidiropoulos P., Boumpas D.T. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum., 2010, Vol. 62, no. 7, pp. 1870-1880.

24. Stec M., Czepiel M., Lenart M., Piestrzyńska-Kajtoch A., Plewka J., Bieniek A., Węglarczyk K., Szatanek R., Rutkowska-Zapała M., Guła Z., Kluczewska A., Baran J., Korkosz M., Siedlar M. Monocyte subpopulations display disease-specific miRNA signatures depending on the subform of Spondyloarthropathy. Front. Immunol., 2023, Vol. 14, 1124894. doi: 10.3389/fimmu.2023.1124894.

25. Strauss L., Mahmoud M.A.A., Weaver J.D., Tijaro-Ovalle N.M., Christofides A., Wang Q., Pal R., Yuan M., Asara J., Patsoukis N., Boussiotis V.A. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol., 2020, Vol. 5, no. 43, eaay1863. doi: 10.1126/sciimmunol.aay1863.

26. Surdacki A., Sulicka J., Korkosz M., Mikolajczyk T., Telesinska-Jasiówka D., Klimek E., Kierzkowska I., Guzik T., Grodzicki T.K. Blood monocyte heterogeneity and markers of endothelial activation in ankylosing spondylitis. J. Rheumatol., 2014, Vol. 41, pp. 481-489.

27. Tam L.S., Gu J., Yu D. Pathogenesis of ankylosing spondylitis. Nat. Rev. Rheumatol., 2010, Vol. 6, no. 7, pp. 399-405.

28. Tang L., Li G., Zheng Y., Hou C., Gao Y., Hao Y., Gao Z., Mo R., Li Y., Shen B., Wang R., Wang Z., Han G. Tim-3 relieves experimental autoimmune encephalomyelitis by suppressing MHC-II. Front. Immunol., 2022, Vol. 12, 770402. doi: 10.3389/fimmu.2021.770402.

29. Wood M.K., Daoud A., Talor M.V., Kalinoski H.M., Hughes D.M., Jaime C.M., Hooper J.E., Won T., Čiháková D. Programmed death ligand 1-expressing macrophages and their protective role in the joint during arthritis. Arthritis Rheumatol., 2024, Vol. 76, no. 4, pp. 553-565.

30. Wright C., Edelmann M., di Gleria K., Kollnberger S., Kramer H., McGowan S., McHugh K., Taylor S., Kessler B., Bowness P. Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway. Ann. Rheum. Dis., 2009, Vol. 68, pp. 1626-1632.

31. Yang J., Zhang L., Yu C., Yang X.-F., Wang H. Monocyte and Macrophage Differentiation: Circulation Inflammatory Monocyte as Biomarker for Inflammatory Diseases. Biomark. Res., 2014, Vol. 2, 1. doi: 10.1186/2050-7771-2-1.


Supplementary files

Review

For citations:


Shevela E.Ya., Sakhno L.V., Tikhonova M.A., Tyrinova T.V., Morenkova A.Yu., Chumasova O.A., Ilina N.A., Shkaruba N.S., Kurochkina Yu.D., Fedorova A.V., Omelchenko V.O., Letyagina E.A., Korolev M.A., Sizikov A.E., Chernykh E.R. Clinical and immunological features of PD-1 and Tim-3 expression on monocytes in axial spondyloarthritis. Medical Immunology (Russia). 2025;27(6):1311-1322. (In Russ.) https://doi.org/10.15789/1563-0625-CAI-3260

Views: 207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)