Preview

Medical Immunology (Russia)

Advanced search

INFLUENCE OF POLYMORPHIC VARIANTS RS10455025 OF THE TSLP GENE AND RS11811856 OF THE TNFSF4 GENE ON THE RISK OF ATOPIC BRONCHIAL ASTHMA AND ALLERGY IN CHILDREN

https://doi.org/10.15789/1563-0625-IOP-3256

Abstract

Abstract

Introduction. The available experimental data to date indicate the determining role of cytokines in the formation of manifestations of bronchial asthma (BA), which led to the creation of the so-called anti-cytokine approach to the therapy of this disease. [5]

The aim of this study was to determine the contribution of polymorphisms rs10455025 of the TSLP gene and rs11811856 of the TNFSF4 gene with the risk of developing bronchial asthma in children in the Kursk population.

Materials and methods. The study included 999 unrelated individuals, including 526 patients with AD and 473 controls. These functional single nucleotide polymorphisms (SNPs) were genotyped using the MassArray-4 genomic mass spectrometer.

Results. It has been established that the alleles rs11811856G TNFSF4 and rs10455025C TSLP, as well as the genotypes rs11811856-G/G and rs10455025-C/C, are associated with an increased risk of developing bronchial asthma in children. The association of rs11811856 TNFSF4 with an increased risk of developing BA was identified in both boys and girls, while the polymorphism rs10455025 TSLP did not show any associations in the stratified analysis by gender. In the analysis of gene-environment interactions in the overall group, a relationship was established with the risk of asthma depending on the exposure to tobacco smoke and the place of residence of children. The influence of SNP data on the risk of concomitant allergopathology in children with bronchial asthma was established, and the influence of the studied polymorphisms on the indicators of rhinocytogram and spirometry was also established. During the study, it was found that the studied polymorphisms rs10455025 TSLP and rs11811856 TNFSF4 in children with BA are associated with an increased risk of developing food sensitization to banana, rice, duck, and a number of pollen (foxtail, common horsetail, bluegrass, ryegrass, fireweed, ash, barley), and epidermal (human hair) allergens. It has also been found that the studied SNPs reduce the risk of sensitization to house dust, cat hair, rabbit hair, and quinoa pollen.

Conclusion. The present study showed that polymorphisms rs10455025 TSLP and rs11811856 TNFSF4 are significantly associated with the risk of developing asthma and are associated with its clinical features.

About the Authors

Aleksandra Vladimirovna Serezhkina
Kursk State Medical University, Kursk, Russian Federation
Russian Federation

assistant of the Department of Pediatrics at KSMU



Olga Yuryevna Bushueva
Kursk State Medical University, Kursk, Russian Federation
Russian Federation

Head of the Laboratory of the Research Institute of Genetic and Molecular Epidemiology,

Doctor of Medical Sciences

Professor of the Department of Biology, Medical Genetics and Ecology, KSMU



Alexey Dmitrievich Bogomazov
Kursk State Medical University, Kursk, Russian Federation
Russian Federation

candidate of medical sciences,

associate professor of pediatrics at KSMU



Alexey Valerievich Polonikov
Kursk State Medical University, Kursk, Russian Federation
Russian Federation

Director of the Research Institute of Genetic and Molecular Epidemiology,

Doctor of Medical Sciences

Professor of the Department of Biology, Medical Genetics and Ecology, KSMU 



References

1. Азарова Ю.Э, Гуреева А.В, Постникова М.И, и др. Связь однонуклеотидного полиморфизма rs4880 гена SOD2 с развитием микрососудистых осложнений сахарного диабета 2-го типа // Научные результаты биомедицинских исследований. ¬– 2023. – Т.9, №4. – С.461-473 Azarova IE, Gureeva AV, Postnikova MI, et al. The link of single nucleotide polymorphism rs4880 of the SOD2 gene to the development of microvascular complications of type 2 diabetes mellitus. Research Results in Biomedicine, 2023, Vol. 9, no.3, pp.461-473. https://rrmedicine.ru/journal/article/3245/?ysclid=mc9bg9t6uj204468755

2. [DOI:10.18413/2658-6533-2023-9-4-0-3]

3. Балаболкин И. И. Атопия и аллергические заболевания у детей // Педиатрия. – 2003. – № 6. – С. 99–102. Balabolkin I.I. Atopic dermatitis and allergic diseases in children. Pediatria n.a. G.N. Speransky, 2003, Vol. 82, no.6, pp. 99-102. https://pediatriajournal.ru/archive?show=278&section=1759&ysclid=mc9bot9q5j715124365

4. Федеральные клинические рекомендации по диагностике и лечению брохиальной астмы [Электронный ресурс] / Российская ассоциация аллергологов и иммунологов. 2024 Federal Clinical Guidelines for the Diagnosis and Treatment of Bronchial Asthma [Electronic resource] / Russian Association of Allergists and Immunologists. 2024 https://spulmo.ru/upload/kr/BA_2024_draft.pdf?ysclid=m6fewuppeg855379756

5. Bottema R.W., Postma D.S., Reijmerink N.E., et al. Interaction of T-cell and antigen presenting cell co-stimulatory genes in childhood IgE. Eur Respir J., 2010, Vol. 35, no.1, pp. 54-63. - https://pubmed.ncbi.nlm.nih.gov/19574333/

6. [DOI: 10.1183/09031936.00018909]

7. Center for Drug Evaluation and Research, FDA approves maintenance treatment for severe asthma, FDA. 2023. - https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-maintenance-treatment-severe-asthma

8. Cayro C., Girard J.P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol., 2014, Vol. 31, pp. 31-33 - https://pubmed.ncbi.nlm.nih.gov/25278425/

9. [DOI: 10.1016/j.coi.2014.09.004]

10. Chang D., Hunkapiller J., Bhangale T., at al. A whole genome sequencing study of moderate to severe asthma identifies a lung function locus associated with asthma risk. Sci Rep., 2022, Vol. 12, no. 1, pp.5574. - https://pubmed.ncbi.nlm.nih.gov/35368043/

11. [DOI: 10.1038/s41598-022-09447-8]

12. Demenais F., Margaritte-Jeannin P., Barnes K.C, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet., 2018, Vol. 50, no. 1, pp. 42-53. - https://pubmed.ncbi.nlm.nih.gov/29273806/

13. [DOI: 10.1038/s41588-017-0014-7]

14. Ferreira M.A.R., Mathur R., Vonk J.M., et al. Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. Am J Hum Genet., 2019, Vol. 104, no. 4, pp. 665-684. - https://pubmed.ncbi.nlm.nih.gov/30929738/

15. [DOI: 10.1016/j.ajhg.2019.02.022]

16. Gergen P.J., Togias A. Inner city asthma. Immunol Allergy Clin North Am., 2015, Vol. 35, no. 1, pp. 101–14. - https://www.immunology.theclinics.com/article/S0889-8561(14)00106-4/abstract

17. [DOI: 10.1016/j.iac.2014.09.006]

18. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2022.

19. - www.ginasthma.org

20. Kaur J., Upendra S., Barde S. Inhaling hazards, exhaling insights: a systematic review unveiling the silent health impacts of secondhand smoke pollution on children and adolescents. Int J Environ Health Res., 2024, Vol. 34, no. 12, pp. 4059–4073. - https://pubmed.ncbi.nlm.nih.gov/38576330/

21. [DOI: 10.1080/09603123.2024.2337837]

22. Kim K.W., Ober C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol Res., 2019, Vol. 11, no. 2, pp. 170-187. - https://pubmed.ncbi.nlm.nih.gov/30661310/

23. [DOI: 10.4168/aair.2019.11.2.170]

24. Liu Y.J. TSLP in epithelial cell and dendritic cell cross talk. Adv Immunol., 2009, Vol.101, pp.1-25. - https://pubmed.ncbi.nlm.nih.gov/19231591/

25. [DOI: 10.1016/S0065-2776(08)01001-8]

26. Mukherjee A.B., Zhang Z. Allergic asthma: influence of genetic and environmental factors. J Biol Chem., 2011, Vol. 286, pp. 32883–32889 - https://pubmed.ncbi.nlm.nih.gov/21799018/

27. [DOI: 10.1074/jbc.R110.197046]

28. Murrison L.B., Ren X., Preusse K., at al. TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. J Allergy Clin Immunol., 2022, Vol. 149, no.1, pp. 79-88. - https://pubmed.ncbi.nlm.nih.gov/34111451/

29. [DOI: 10.1016/j.jaci.2021.05.033]

30. Parsons M.A., Beach J., Senthilselvan A. Association of living in a farming environment with asthma incidence in Canadian children. J Asthma., 2017, Vol. 54, no. 3, pp. 239-249. - https://pubmed.ncbi.nlm.nih.gov/27383380/

31. [DOI: 10.1080/02770903.2016.1206564]

32. Pividori M., Schoettler N., Nicolae D.L., at al. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respir Med., 2019,

33. Vol. 7, no. 6, pp. 509-522. - https://pubmed.ncbi.nlm.nih.gov/31036433/

34. [DOI: 10.1016/S2213-2600(19)30055-4]

35. Rothenberg M.E., Jonathan M. S., Joseph D.S., et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet., 2010, Vol.42, pp. 89-291. - https://pubmed.ncbi.nlm.nih.gov/20208534/

36. [DOI: 10.1038/ng.547]

37. Shrestha A.B., Pokharel P., Singh H., at al. Association between bronchial asthma and TSLP gene polymorphism: a systematic review and meta-analysis. Ann Med Surg (Lond)., 2024, Vol. 86, no. 8, pp. 4684-4694. - https://pubmed.ncbi.nlm.nih.gov/39118763/

38. [DOI: 10.1097/MS9.0000000000002107]

39. Song R., Zhang H., Liang Z. Research progress in OX40/OX40L in allergic diseases. Int Forum Allergy Rhinol., 2024, Vol. 14, no. 12, pp. 1921-1928. - https://pubmed.ncbi.nlm.nih.gov/39404736/

40. [DOI: 10.1002/alr.23469]

41. Soumelis V., Reche P.A., Kanzler H., et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol, 2002, Vol. 3, pp. 673-680. - https://pubmed.ncbi.nlm.nih.gov/12055625/

42. [DOI: 10.1038/ni805]

43. Trivedi M., Denton E. Asthma in children and adults—what are the differences and what can they tell us about asthma? Front Pediatr., 2019, pp. 7. - https://www.frontiersin.org/articles/10.3389/fped.2019.00256.

44. [DOI: 10.3389/fped.2019.00256]

45. Tsuo K., Zhou W., Wang Y., at al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genom., 2022, Vol. 2, no. 12, pp. 100212. https://pubmed.ncbi.nlm.nih.gov/36778051/

46. [DOI: 10.1016/j.xgen.2022.100212]

47. Vicente C.T., Revez J.A., Ferreira M.A.R. Lessons from ten years of genome-wide association studies of asthma. Clin Transl Immunology., 2017, Vol. 6, no. 12, pp. 165. https://pubmed.ncbi.nlm.nih.gov/29333270/

48. [DOI: 10.1038/cti.2017.54]

49. Wang I.J., Wu L.S., Lockett G.A., at al. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Ann Allergy Asthma Immunol., 2016, Vol.116, pp.139–145. https://pubmed.ncbi.nlm.nih.gov/26712523/

50. [DOI: 10.1016/j.anai.2015.11.016]

51. Zhu Z., Lee P.H., Chaffin M.D., et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat Genet., 2018, Vol. 50, no. 6, pp. 857-864. https://pubmed.ncbi.nlm.nih.gov/29785011/

52. [DOI: 10.1038/s41588-018-0121-0]


Supplementary files

1. 3256
Subject
Type Other
Download (23KB)    
Indexing metadata ▾

Review

For citations:


Serezhkina A.V., Bushueva O.Yu., Bogomazov A.D., Polonikov A.V. INFLUENCE OF POLYMORPHIC VARIANTS RS10455025 OF THE TSLP GENE AND RS11811856 OF THE TNFSF4 GENE ON THE RISK OF ATOPIC BRONCHIAL ASTHMA AND ALLERGY IN CHILDREN. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-IOP-3256

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)