Subpopulation profile of blood leukocytes in assessing severity of COVID-19 and in conditions associated with cytokine storm
https://doi.org/10.15789/1563-0625-SPO-3236
Abstract
Currently, the clinical manifestations of COVID-19 patients are classified from mild to severe, especially in groups of patients susceptible to chronic diseases. Selection of the most informative prognostic indices of possible outcome or severe course of the disease in COVID-19 patients is required at early stage in order to determine effective treatment strategy. The earliest predictors of clinical deterioration in COVID-19 are elevated levels of interleukin-6, interleukin-10, C-reactive protein, procalcitonin, and other indices of innate immune system. The objectives of this study included a search for the most informative parameters of general clinical blood analysis and the main lymphocyte subpopulations in patients with COVID-19, which may be helpful in interpreting the severity of the disease and development of a cytokine storm, along with clinical manifestations and functional diagnostic methods. We conducted a retrospective cohort study of peripheral blood in 65 patients including 57 males and 8 females. The age of the patients ranged from 32 to 82 years (an average of 48.6 years old). After examining the total blood counts in 65 samples, cytometric analysis was performed using the Cytomics™ FC 500 series flow cytofluorometry system (Beckman Coulter, USA), with CD45-ECD, CD3-FITC, CD4-PC7, CD8-PE, CD19-PC-5, CD16+56-PE monoclonal antibodies from Beckman Coulter (USA). Statistical processing of the research results was carried out in the IBM SPSS Statistics 26.0 program (IBM, USA). In the group of patients with COVID-19, absolute lymphopenia is noted along with neutrophilia at the initial medical treatment, resulting into increased values of the neutrophil-leukocyte and leukocyte-T-lymphocyte indices. These indexes are quite informative and can be used in predicting disease risks. Determination of the most reliable indices of cellular immunity, such as CD3+, CD3+CD4+, CD3+CD8+, CD3- CD16+CD56+ lymphocytes, in addition to a clinical blood test, may assess the features of the patients’ immune response to SARS-CoV-2 infection, helping to predict the disease severity, and make a decision to change the treatment strategy if required.
About the Authors
S. B. PutkovRussian Federation
Putkov S.B., Doctor of Clinical Laboratory Diagnostics, Head, Department of Clinical Infectious and Immunological Research, Center for Clinical Laboratory Diagnostics
3 Gospitalnaya Square Moscow 105094
N. V. Davydova
Russian Federation
Davydova N.V., Doctor of Clinical Laboratory Diagnostics, Department of Clinical Infectious and Immunological Research, Center for Clinical Laboratory Diagnostics
3 Gospitalnaya Square Moscow 105094
S. P. Kazakov
Russian Federation
Kazakov S.P., PhD, MD (Medicine), Associate Professor, Doctor of Clinical Laboratory Diagnostics, Head, Clinical Laboratory Center; Professor
3 Gospitalnaya Square Moscow 105094
References
1. Davydova N.V., Putkov S.B., Reshetnyak D.V., Kazakov S.P. Studying interconnections of cytokines and their diagnostic effectiveness when assessing severity grade in COVID-19 patients. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2025, Vol. 27, no. 2, pp. 379-394. (In Russ.) doi: 10.15789/1563-0625-SIO-3067.
2. Kudryashov S.K., Kanishchev Yu.N., Putkov S.B., Esaulenko N.B., Karpov V.O., Ovcharenko V.P., Izgorodin A.S., Zhukova E.E., Suslova L.A., Parshakova E.V. Instructions for conducting the preanalytical stage (procedure for taking, storing and transporting) biomaterial for laboratory research in the Center for Clinical Laboratory Diagnostics of the Main Military Clinical Hospital named after academician N.N. Burdenko. Moscow: Eko-Press, 2016. 220 p.
3. Patsenko M.B., Zaitsev A.A., Chernov S.A., Stets V.V., Kudryashov O.I., Davydov D.V., Chernetsov V.A., Kryukov E.V. Practical approaches to the treatment of patients with new coronavirus infection (COVID-19). Voyenno-meditsinskiy zhurnal = Russian Military Medical Journal, 2022, Vol. 343, no. 8, pp. 20-27. (In Russ.)
4. Putkov S.B., Davydova N.V., Troyan V.N., Kazakov S.P. Investigation of the relationship of inflammatory markers with CT sings of pathological lung changes in patients with COVID-19. Meditsinskiy vestnik GVKG im. N.N. Burdenko = Medical Bulletin of the Main Military Clinical Hospital named after N.N. Burdenko, Vol. 5, no. 2, pp. 22-31. (In Russ.)
5. Putkov S.B., Davydova N.V., Kazakov S.P. Study of inflammatory markers and their diagnostic effectiveness in patients with COVID-19 patients. Meditsinskiy alfavit = Medical Alphabet, no. 23, pp. 11-17. (In Russ.)
6. Akbari H., Tabrizi R., Lankarani K.B., Aria H., Vakili S., Asadian F., Noroozi S., Keshavarz P., Faramarz S. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci., 2020, Vol. 258, 118167. doi: 10.1016/j.lfs.2020.118167
7. Assandri R., Buscarini E., Canetta C., Scartabellati A., Viganò G., Montanelli A. Laboratory biomarkers predicting COVID-19 severity in the emergency room. Arch. Med. Res., 2020, Vol. 51, no. 6, pp. 598-599.
8. Chen J., Lau Y.F., Lamirande E.W., Paddock C.D., Bartlett J.H., Zaki S.R., Subbarao K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol., 2010, Vol. 84, no. 3, pp. 1289-1301.
9. Chen Z., Wherry E.J. T cell responses in patients with COVID-19. Nat. Rev. Immunol., 2020, Vol. 20, no. 9, pp. 529-536.
10. COVID-19 epidemiological update – 6 November 2024. World Health Organization. Available at: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-173.
11. Drosten C., Seilmaier M., Corman V.M., Hartmann W., Scheible G., Sack S., Guggemos W., Kallies R., Muth D., Junglen S., Müller M.A., Haas W., Guberina H., Röhnisch T., Schmid-Wendtner M., Aldabbagh S., Dittmer U., Gold H., Graf P., Bonin F., Rambaut A., Wendtner C.M. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect. Dis., 2013, Vol. 13, no. 9, pp. 745-751.
12. García L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol., 2020, Vol. 11, 1441. doi: 10.3389/fimmu.2020.01441
13. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., Damoraki G., Gkavogianni T., Adami M.E., Katsaounou P., Ntaganou M., Kyriakopoulou M., Dimopoulos G., Koutsodimitropoulos I., Velissaris D., Koufargyris P., Karageorgos A., Katrini K., Lekakis V., Lupse M., Kotsaki A., Renieris G., Theodoulou D., Panou V., Koukaki E., Koulouris N., Gogos C., Koutsoukou A. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe, 2020, Vol. 27, no. 6, pp. 992-1000.e3.
14. Golovkin A., Kalinina O., Bezrukikh V., Aquino A., Zaikova E., Karonova T., Melnik O., Vasilieva E., Kudryavtsev I. Imbalanced immune response of T-сell and B-cell subsets in patients with moderate and severe COVID-19. Viruses, 2021, Vol. 13, no. 10, 1966. doi: 10.3390/v13101966.
15. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., Zhuang H., Wu B., Zhong H., Shao H., Fang W., Gao D., Pei F., Li X., He Z., Xu D., Shi X., Anderson V.M., Leong A.S. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med., 2005, Vol. 202, no. 3, pp. 415-424.
16. Hsieh W.C., Lai E.Y., Liu Y.T., Wang Y.F., Tzeng Y.S., Cui L., Lai Y.J., Huang H.C., Huang J.H., Ni H.C., Tsai D.Y., Liang J.J., Liao C.C., Lu Y.T., Jiang L., Liu M.T., Wang J.T., Chang S.Y., Chen C.Y., Tsai H.C., Chang Y.M., Wernig G., Li C.W., Lin K.I., Lin Y.L., Tsai H.K., Huang Y.T., Chen S.Y. NK cell receptor and ligand composition influences the clearance of SARS-CoV-2. J. Clin. Invest., 2021, Vol. 131, no. 21, e146408. doi: 10.1172/JCI146408
17. Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, Vol. 19, no. 3, pp. 141-154.
18. Izcovich A., Ragusa M.A., Tortosa F., Marzio M.A.L., Agnoletti C., Bengolea A., Ceirano A., Espinosa F., Saavedra E., Sanguine V., Tassara A., Cid C., Catalano H.N., Agarwal A., Foroutan F., Rada G. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One, 2020, Vol. 15, no. 11, e0241955. doi: 10.1371/journal.pone.024195526.
19. Jiang Y., Xu J., Zhou C., Wu Z., Zhong S., Liu J., Luo W., Chen T., Qin Q., Deng P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med., 2005, Vol. 171, no. 8, pp. 850-857.
20. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Cheng L., Li J., Wang X., Wang F., Liu L., Amit I., Zhang S., Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients With COVID-19. Nat. Med., 2020, Vol. 26, no. 6, pp. 842-844.
21. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., Xiong L., Guo C., Tian J., Luo J., Yao J., Pang R., Shen H., Peng C., Liu T., Zhang Q., Wu J., Xu L., Lu S., Wang B., Weng Z., Han C., Zhu H., Zhou R., Zhou H., Chen X., Ye P., Zhu B., Wang L., Zhou W., He S., He Y., Jie S., Wei P., Zhang J., Lu Y., Wang W., Zhang L., Li L., Zhou F., Wang J., Dittmer U., Lu M., Hu Y., Yang D., Zheng X. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020, Vol. 55, 102763. doi: 10.1016/j.ebiom.2020.102763.
22. National Research Project for SARS, Beijing Group. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome. Am. J. Clin. Pathol., 2004, Vol. 121, no. 4, pp. 507-511.
23. Orange J.S. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect., 2002, Vol. 4, no. 15, pp. 1545-1558.
24. Osman M.S., van Eeden C., Cohen Tervaert J.W. Fatal COVID-19 infections: Is NK cell dysfunction a link with autoimmune HLH? Autoimmun. Rev., 2020, Vol. 19, no. 7, 102561. doi: 10.1016/j.autrev.2020.102561.
25. Putkov S., Davydova N., Kazakov S. Laboratory indicators of inflammation in the development of cytokine storm in patients with COVID-19. Clin. Chim. Acta, 2024, Vol. 558, 119179. doi: 10.1016/j.cca.2024.119179.
26. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian DS. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, Vol. 71, no. 15, pp. 762-768.
27. Radzikowska U., Ding M., Tan G., Zhakparov D., Peng Y., Wawrzyniak P., Wang M., Li S., Morita H., Altunbulakli C., Reiger M., Neumann A.U., Lunjani N., Traidl-Hoffmann C., Nadeau K.C., O’Mahony L., Akdis C., Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy, 2020, Vol. 75, no. 11, pp. 2829-2845.
28. Shimizu M. Clinical Features of Cytokine Storm Syndrome. Adv. Exp. Med. Biol., 2024, Vol. 1448, pp. 33-42.
29. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, Vol. 20, no. 6, pp. 363-374.
30. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R., Malle L., Moreira A., Park M.D., Pia L., Risson E., Saffern M., Salomé B., Esai Selvan M., Spindler M.P., Tan J., van der Heide V., Gregory J.K., Alexandropoulos K., Bhardwaj N., Brown B.D., Greenbaum B., Gümüş Z.H., Homann D., Horowitz A., Kamphorst A.O., Curotto de Lafaille M.A., Mehandru S., Merad M., Samstein R.M.; Sinai Immunology Review Project. Immunology of COVID-19: Current State of the Science. Immunity, 2020, Vol. 52, no. 6, pp. 910-941.
31. Velavan T.P., Meyer C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis., 2020, Vol. 95, pp. 304-307.
32. Wang F., Hou H., Luo Y., Tang G., Wu S., Huang M., Liu W., Zhu Y., Lin Q., Mao L., Fang M., Zhang H., Sun Z. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight, 2020, Vol. 5, no. 10, e137799. doi: 10.1172/jci.insight.137799.
33. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, Vol. 8, no. 5, pp. 475-481.
34. Zhao S., Lin Q., Ran J., Musa S.S., Yang G., Wang W., Lou Y., Gao D., Yang L., He D., Wang M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, Vol. 92, pp. 214-217.
35. Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P., Dong X.Q., Zheng Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol., 2020, Vol. 17, no. 5, 541-543.
36. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol., 2020, Vol. 17, no. 5, pp. 533-535.
Supplementary files
Review
For citations:
Putkov S.B., Davydova N.V., Kazakov S.P. Subpopulation profile of blood leukocytes in assessing severity of COVID-19 and in conditions associated with cytokine storm. Medical Immunology (Russia). 2025;27(5):1063-1076. (In Russ.) https://doi.org/10.15789/1563-0625-SPO-3236




































