Preview

Medical Immunology (Russia)

Advanced search

IMMUNOMODULATORY AND ANTITUMOR POTENTIAL OF RNA INTERFERENCE

https://doi.org/10.15789/1563-0625-IAA-3227

Abstract

Abstract

The aim of the work: to summarize the existing results in antitumor RNAi therapy, as well as to highlight the role of siRNA as a remodulator of the immune response in oncological diseases.

Materials and methods: the literature review includes an analysis of scientific papers from the PubMed, Embase, eLIBRARY, CyberLeninka and Web of Science, CNKI and MEDLINE databases

Results: The importance of cancer problem is due to the immune tolerance of tumors, their drug resistance, and a number of limitations in the use of traditional treatment methods. RNA interference (RNAi)-based approaches, which can be implemented using small interfering RNA (siRNA) molecules, can offer promising therapeutic tactics that will combine a immunomodulatory effect and targeted suppression of gene expression important for tumor growth. Inhibition of tumor regulatory pathways will disrupt tumor proliferation and metastasis, while mobilizing antitumor immunity through stimulation of Toll-like receptors, maturation of dendritic cells, and infiltration of cytotoxic T lymphocytes into the tumor. A study of this approach on an in vivo model in laboratory conditions led to a decrease in the volume of melanoma, breast tumors and hepatocellular carcinoma up to 5 times, suppression of metastasis and an increase in overall survival.

Conclusions: Cancer - most significant problems of modern medicine, characterized by high mortality, mechanisms of immune tolerance and frequent emergence of resistance to existing therapeutic approaches. Despite the progress in modern oncoimmunology, the use of checkpoint inhibitors and targeted antitumor agents, the effectiveness of current approaches islimited by the immunosuppressive environment of the tumor, heterogeneity of malignant cells, side effects and toxicity of the drugs themselves. RNAi is a promising approach that can simultaneously solve several key problems of oncoimmunology, such as suppression of the expression of critical oncogenes; blocking tumor signaling pathways; as well as activation of innate immunity. The dual effect of RNAi, which consists of a direct effect on tumor cells and immune modulation of the tumor environment, makes RNAi an excellent tool for overcoming tumor immunotolerance and providing a direct cytotoxic antitumor effect.

About the Authors

E. A. Pashkov
I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
Russian Federation

Ph.D., senior lecturer of microbiology, virology and immunology department of Sechenov University, Moscow, Russia. 119991, Moscow, Trubetskaya street, 8, building 2; junior researcher of I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia. 105064, Moscow, Maly Kazenny Lane, Building 5A


Competing Interests:

к.м.н., старший преподаватель кафедры микробиологии, вирусологии и иммунологии ФГАОУ ВО ПМГМУ им И.М. Сеченова. 119991, город Москва, Трубецкая улица, 8 стр.2; младший научный сотрудник лаборатории молекулярной иммунологии ФГБНУ НИИВС им И.И. Мечникова



A. A. Murzina
Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
Russian Federation

Ph.D., senior Researcher of I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia. 105064, Moscow, Maly Kazenny Lane, Building 5A



I. B. Semenova
Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
Russian Federation

MD, Leading Researcher of I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia. 105064, Moscow, Maly Kazenny Lane, Building 5A



O. A. Shatokhin
Russian Medical Academy of Continuous Professional Education, Moscow, Russia
Russian Federation

MD., Professor, Department of endoscopic urology, Russian Medical Academy of Continuous Professional Education. 125993, Moscow, Barrikadnaya st., 2/1, building 1



O. A. Svitich
I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
Russian Federation

Corresponding member of RAS, MD, The head of I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia. Maly Kazenny Lane, Building 5A; Professor of Microbiology, Virology and Immunology department of Sechenov University, Moscow, Russia. 119991, Moscow, Trubetskaya street, 8, building 2



V. V. Zverev
I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
Russian Federation

Academician of RAS, Doctor of Biological Sciences, Scientific Adviser of I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia. Maly Kazenny Lane, Building 5A; Professor, The Leader of Microbiology, Virology and Immunology department of Sechenov University, Moscow, Russia. 119991, Moscow, Trubetskaya street, 8, building 2         ORCID: 0000-0002-0017-1892



References

1. Chen M.Y., Zheng W.Y., Liu Y.F., Li X.H., Lam M.I., Su Z., Cheung T., Ungvari G.S., Tang L., Ng C.H., Zhang Q., Xiang Y.T.. Global prevalence of poor sleep quality in cancer patients: A systematic review and meta-analysis. Gen Hosp Psychiatry., 2024, Vol. 87, pp. 92-102.

2. Mattiuzzi C., Lippi G.. Current Cancer Epidemiology. J Epidemiol Glob Health., 2019, Vol. 9, no. 4, pp. 217-222.

3. Liu Y., Li C., Lu Y., Liu C., Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol., 2022, Vol. 13:1016817.

4. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al.. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin., Vol. 71, no. 3, pp. 209–49.

5. Van Cutsem E., Bang Y-J., Feng-yi F., Xu J.M., Lee K-W., Jiao S-C. et al. Her2 screening data from toga: Targeting Her2 in gastric and gastroesophageal junction cancer. Gastric Cancer., Vol. 18, no. 3, pp. 476–84.

6. Janjigian Y.Y., Shitara K., Moehler M., Garrido M., Salman P., Shen L. et al.. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (Checkmate 649): A randomised, open-label, phase 3 trial. Lancet., Vol. 398., pp. 27–40.

7. Terwoord J.D., Beyer A.M., Gutterman D.D. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther., 2022, Vol. 237.

8. Curigliano G., Cardinale D., Dent S., Criscitiello C., Aseyev O., Lenihan D., Cipolla C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin., 2016, Vol. 66, no. 4, pp. 309-25.

9. De Grado A., Cencini F., Priori A. Neurology of cancer immunotherapy. Neurol Sci., 2023, Vol. 44, no. 1, pp. 137-148.

10. Wudhikarn K., Perales M.A. Infectious complications, immune reconstitution, and infection prophylaxis after CD19 chimeric antigen receptor T-cell therapy. Bone Marrow Transplant., 2022, Vol. 57, no. 10, pp. 1477-1488.

11. Pautier P., Motte-Rouge T., Lécuru F., Classe J.M., Ferron G., Floquet A., Kurtz J.E., Freyer G., Hardy-Bessard A.C. Prise en charge médicale de la récidive du cancer épithélial de l'ovaire: Medical management of recurrent epithelial ovarian cancer. Bull Cancer. 2021, Vol. 108, no. 9, pp. 22-32.

12. Chowaniec H., Ślubowska A., Mroczek M., Borowczyk M., Braszka M., Dworacki G., Dobosz P., Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front Immunol. 2024, pp. 15:1375433.

13. Buyukgolcigezli I., Tenekeci A.K., Sahin I.H. Opportunities and Challenges in Antibody-Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment. Cancers (Basel). 2025. Vol. 17, no. 6, pp. 958.

14. Hu Y., Zhou T., Cai P., He Z. Neoantigens: new hope for cancer therapy. Front Oncol. 2025. pp. 15:1531592.

15. Zhang S., Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater. 2025, Vol. 193, pp. 107-127. 7

16. Jin K.T., Du W.L., Liu Y.Y., Lan H.R., Si J.X., Mou X.Z. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel). 2021. Vol. 13, no. 4, pp.588.

17. Goradel N.H., Baker A.T., Arashkia A., Ebrahimi N., Ghorghanlu S., Negahdari B. Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer. 2021. Vol. 45, no. 1, pp. 100639.

18. Fu Z., Li S., Han S., Shi C., Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther. 2022, Vol. 7, no. 1, pp.93.

19. Starostina E.V., Nizolenko L.F., Karpenko L.I., Ilyichev A.A. Antitumor mRNA vaccines based on neoantigens. Siberian journal of oncology. 2024, Vol. 23, no. 6, pp. 149-158.

20. Ameh T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review. Environ Toxicol Pharmacol. 2019, pp. 71:103220.

21. Jin Y., Zhang B., Li J., Guo Z., Zhang C., Chen X., Ma L., Wang Z., Yang H., Li Y., Weng Y., Huang Y., Yan X., Fan K. Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma. Sci Adv. 2025, Vol. 11, no. 8.

22. Agrawal N. RNA interference: biology, mechanism, and applications / N. Agrawal et al. // Microbiol Mol Biol Rev. – 2003. Vol. 67, no. 4, pp. 657-85

23. Sawyer K., Leahy S., Wood K.D. Progress with RNA Interference for the Treatment of Primary Hyperoxaluria. / K. Sawyer, S. Leahy, K.D. Wood. //. BioDrugs. – 2022. Vol. 36, no. 4, pp. 437-441

24. Valenzuela R.A., Suter S.R., Ball-Jones A.A., Ibarra-Soza J.M, Zheng Y., Beal P.A. Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem. 2015, Vol. 16, no. 2, pp. 262-7.

25. Forsbach A., Nemorin J.G., Montino C., Müller C., Samulowitz U., Vicari A.P., Jurk M., Mutwiri G.K., Krieg A.M., Lipford G.B., Vollmer J. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol. 2008, Vol. 180, no. 6, pp. 3729-38.

26. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005, Vol. 348, no. 5, pp. 1079-90.

27. Jurk M., Chikh G., Schulte B., Kritzler A., Richardt-Pargmann D., Lampron C., Luu R., Krieg A.M., Vicari A.P., Vollmer J. Immunostimulatory potential of silencing RNAs can be mediated by a non-uridine-rich toll-like receptor 7 motif. Nucleic Acid Ther. Vol. 21, no. 3, pp. 201-14.

28. Goodchild A., Nopper N., King A., Doan T., Tanudji M., Arndt G.M., Poidinger M., Rivory L.P., Passioura T. Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol. 2009, pp.10-40.

29. Brugarolas J., Obara G., Beckermann K.E., Rini B., Lam E.T., Hamilton J., Schluep T., Yi M., Wong S., Mao Z.L., Gamelin E., Tannir N.M. A First-in-Human Phase 1 Study of a Tumor-Directed RNA-Interference Drug against HIF2α in Patients with Advanced Clear Cell Renal Cell Carcinoma. Clin Cancer Res. 2024, Vol. 30, no. 11, pp. 2402-2411.

30. https://clinicaltrials.gov/study/NCT06424301?cond=siRNA&rank=4&page=1&limit=10

31. Cuiffo B., Maxwell M., Yan D., Guemiri R., Boone A., Bellet D., Rivest B., Cardia J., Robert C., Fricker S.P. Self-delivering RNAi immunotherapeutic PH-762 silences PD-1 to generate local and abscopal antitumor efficacy. Front Immunol. 2024, Vol. 4, pp. 15:1501679.

32. Mami-Chouaib F., Blanc C., Corgnac S., Hans S., Malenica I., Granier C., Tihy I., Tartour E. Resident memory T cells, critical components in tumor immunology. J Immunother Cancer. 2018, Vol. 6, no. 1, pp. 87.

33. Krummen M., Balkow S., Shen L., Heinz S., Loquai C., Probst H.C., Grabbe S. Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy. J Leukoc Biol. Vol. 88, no. 1, pp. 189-99.

34. Saraiva M., O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010, Vol. 10, no. 3, pp. 170-81.

35. Pradhan P., Qin H., Leleux J.A., Gwak D., Sakamaki I., Kwak L.W., Roy K. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials. 2014, Vol. 35, no. 21, pp. 5491-504.

36. Fernandez-Alarcon J., Cladera M.A., Rodriguez-Camenforte N., Sitia G., Guerra-Rebollo M., Borros S., Fornaguera C. Regulation of mitochondrial apoptosis via siRNA-loaded metallo-alginate hydrogels: A localized and synergistic antitumor therapy. Biomaterials. 2025, pp. 318:123164.

37. Che Z., Wang W., Zhang L., Lin Z. Therapeutic strategies targeting CD47-SIRPα signaling pathway in gastrointestinal cancers treatment. J Pharm Anal. 2025, Vol. 15, no. 1, pp. 101099.

38. Taghavi-Farahabadi M., Mahmoudi M., Mojtabavi N., Noorbakhsh F., Ghanbarian H., Koochaki A., Hashemi S.M., Rezaei N. Enhancing the anti-tumor activity and reprogramming M2 macrophages by delivering siRNAs against SIRPα and STAT6 via M1 exosomes and combining with anti-PD-L1. Life Sci. 2025 pp. 361:123311.

39. Orditura M., Galizia G., Sforza V., Gambardella V., Fabozzi A., Laterza M.M., Andreozzi F., Ventriglia J., Savastano B., Mabilia A., Lieto E., Ciardiello F., De Vita F. Treatment of gastric cancer. World J Gastroenterol. 2014, Vol. 20, no. 7, pp. 1635-49.

40. Chung H.W., Lim J.B. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J Gastroenterol. 2014, Vol. 20, no. 7, pp. 1667-80.

41. Vivier E., Spits H., Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat Rev Immunol. 2009 Vol. 9, no. 4, pp. 229-34.

42. Petanidis S., Anestakis D., Argyraki M., Hadzopoulou-Cladaras M., Salifoglou A. Differential expression of IL-17, 22 and 23 in the progression of colorectal cancer in patients with K-ras mutation: Ras signal inhibition and crosstalk with GM-CSF and IFN-γ. PLoS One. 2013 Vol.8, no. 9.

43. Xu X., Tang Y., Guo S., Zhang Y., Tian Y., Ni B., Wang H. Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. Pancreas. 2014 Vol. 43, no. 3, pp. 470-7.

44. Jiang R., Wang H., Deng L., Hou J., Shi R., Yao M., Gao Y., Yao A., Wang X., Yu L., Sun B. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013, pp. 13:59.

45. Kim K., Kim G., Kim J.Y., Yun H.J., Lim S.C., Choi H.S. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014, Vol. 35, no. 6, pp.1352-61.

46. Ji Y., Yang X., Li J., Lu Z., Li X., Yu J., Li N. IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. Int J Clin Exp Pathol. 2014, Vol. 7, no. 7, pp. 3694-703.

47. Zhou J., Li Y., Jiang X., Xin Z., Liu W., Zhang X., Zhai Y., Zhang Z., Shi T., Xue M., Zhang M., Wu Y., Chu Y., Wang S., Jin X., Zhu W., Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater Today Bio. 2025, pp. 31:101603.

48. Lan T., Wei Z., He Y., Wan S., Liu L., Cheng B., Li R., Chen H., Liu G., Meng Z. Immunostimulatory siRNA with a uridine bulge leads to potent inhibition of HBV and activation of innate immunity. Virol J. 2021 Vol. 18, no. 1, pp. 37.

49. Mocellin S., Pasquali S., Rossi C.R., Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2010 Vol. 102, pp. 7, pp. 493-501.

50. Strashilov S., Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci. 2021 Vol. 22, no. 12, pp. 6395.

51. Kabilova T.O., Sen'kova A.V., Nikolin V.P., Popova N.A., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. Antitumor and Antimetastatic Effect of Small Immunostimulatory RNA against B16 Melanoma in Mice. PLoS One. 2016 Vol. 11, no. 3.

52. Gao Y., Li A., Li Y., Guo H., He L., Li K., Shcharbin D., Shi X., Shen M. Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis. Biomacromolecules. 2024 Vol. 25, no. 12, pp. 7995-8005.

53. Mao B., Wang F., Zhang J., Li Q., Ying K. Long non-coding RNA human leucocyte antigen complex group-18 HCG18 (HCG18) promoted cell proliferation and migration in head and neck squamous cell carcinoma through cyclin D1-WNT pathway. Bioengineered. 2022 Vol. 13, no. 4, pp. 9425-9434.

54. Hoover E.C., Day E.S. Antibody/siRNA Nanocarriers Against Wnt Signaling Suppress Oncogenic and Stem-Like Behavior in Triple-Negative Breast Cancer Cells. J Biomed Mater Res A. 2025 Vol. 113, no. 1.

55. Oura K., Morishita A., Tani J., Masaki T. Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int J Mol Sci. 2021 Vol. 22, no. 11, pp. 5801.

56. Kythreotou A., Siddique A., Mauri F.A., Bower M., Pinato D.J. PD-L1. J Clin Pathol. 2018 Vol. 71, no. 3, pp. 189-194.

57. Huang K.W., Hsu F.F., Qiu J.T., Chern G.J., Lee Y.A., Chang C.C., Huang Y.T., Sung Y.C., Chiang C.C., Huang R.L., Lin C.C., Dinh T.K., Huang H.C., Shih Y.C., Alson D., Lin C.Y., Lin Y.C., Chang P.C., Lin S.Y., Chen Y. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci Adv. 2020 Vol. 6, no. 3.

58. Zhao J., Cui X., Zhan Q., Zhang K., Su D., Yang S., Hong B., Wang Q., Ju J., Cheng C., Li C., Wan C., Wang Y., Zhou J., Kang C. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics. 2024 Vol. 14, no. 7, pp. 2835-2855.

59. Pereyra L., Schlottmann F., Steinberg L., Lasa J. Colorectal Cancer Prevention: Is Chat Generative Pretrained Transformer (Chat GPT) ready to Assist Physicians in Determining Appropriate Screening and Surveillance Recommendations? J Clin Gastroenterol. 2024 Vol. 58, no. 10, pp. 1022-1027.

60. Ren Q., Tian T., Wang B., Pan J., Huang Y., Zhong L., Wang Y., Wang X., Huang X. UVA-responsive Fe₃O₄@ZnO nanocarrier grafted with anti-EGFR antibody for precision delivery of Nrf2-siRNA and brusatol: A novel platform for integrated photodynamic, gene, and chemotherapy. Int J Biol Macromol. 2025, Vol. 305, pp. 141153.

61. A., Svitich & Filina, A. & Davydova, N. & Gankovskaya, L. & Zverev, V.. (2018). The role of innate immunity factors in tumorigenesis process. Medical Immunology (Russia). (2018), 20:151-162.

62. Khashukoeva A.Z., Svitich O.A., Markova E.A. PHOTODYNAMIC THERAPY - ANTIVIRAL THERAPY? HISTORY OF THE QUESTION. PERSPECTIVES. Laser medicine (2012), 16:63-67.


Supplementary files

1. 3227
Subject
Type Other
Download (174KB)    
Indexing metadata ▾

Review

For citations:


Pashkov E.A., Murzina A.A., Semenova I.B., Shatokhin O.A., Svitich O.A., Zverev V.V. IMMUNOMODULATORY AND ANTITUMOR POTENTIAL OF RNA INTERFERENCE. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-IAA-3227

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)