Antitumor effects of small interfering RNAs
https://doi.org/10.15789/1563-0625-AEO-3227
Abstract
The aim of our work was to summarize the existing results in anticancer therapy with small interfering RNAs (siRNAs), as well as to highlight the role of siRNA as a remodulator of the immune response in oncological diseases. The literature review includes an analysis of research publications from the PubMed, Embase, eLIBRARY, CyberLeninka and Web of Science, CNKI and MEDLINE databases. Sufficient challenges in cancer treatment occur due to the immune tolerance of tumors, their drug resistance, and a number of limitations in usage of conventional treatment schedules. The novel RNA interference (RNAi)-based approaches, may be implemented using small interfering RNA (siRNA) molecules. These methods may offer promising therapeutic strategies that will promote an immunomodulatory effect and targeted suppression of gene expression important for tumor growth. Inhibition of tumor regulatory pathways will affect tumor proliferation and metastasis, while mobilizing antitumor immunity through stimulation of Toll-like receptors, maturation of dendritic cells, and infiltration of cytotoxic T lymphocytes into the tumor. The in vivo studies of this approach in experimental models showed a decrease in the volume of melanoma, breast tumors and hepatocellular carcinoma up to 5 times, suppression of metastasis and increased overall survival. Cancer treatment is among the most significant problems of modern medicine, characterized by high mortality, mechanisms of immune tolerance and frequent emergence of resistance to existing therapeutic approaches. Despite the progress in modern oncoimmunology, usage of checkpoint inhibitors and targeted antitumor agents, the effectiveness of current approaches is limited by immunosuppressive microenvironment of tumors, heterogeneity of malignant cells, adverse effects and toxicity of the drug therapy. RNAi treatment is a promising approach that can simultaneously solve several key problems of oncoimmunology, such as suppression of the driver oncogenes; blocking tumor signaling pathways; as well as activation of innate immunity. The dual effect of RNAi, which consists of a direct effect on tumor cells and immune modulation of the tumor environment, makes RNAi an excellent tool for overcoming tumor immunotolerance and providing a direct cytotoxic antitumor effect.
About the Authors
E. A. PashkovRussian Federation
PhD (Medicine), Senior Lecturer, Department of Microbiology, Virology and Immunology; Junior Researcher, Laboratory of Molecular Immunology
A. A. Murzina
Russian Federation
PhD (Medicine), Senior Researcher, Laboratory of Epidemiological Analysis and Monitoring of Infectious Diseases
I. B. Semenova
Russian Federation
PhD, MD (Medicine), Leading Researcher, Laboratory of Therapeutic Vaccines, Lecturer
M. N. Shatokhin
Russian Federation
PhD, MD (Medicine), Professor, Department of Endoscopic Urology
O. A. Svitich
Russian Federation
PhD, MD (Medicine), Full Member, Russian Academy of Science, Director, I. Mechnikov Research Institute for Vaccines and Sera; Professor, Department of Microbiology, Virology and Immunology, I. Sechenov First Moscow State Medical University (Sechenov University)
V. V. Zverev
Russian Federation
PhD, MD (Biology), Full Member, Russian Academy of Science, Scientific Adviser, I. Mechnikov Research Institute for Vaccines and Sera; Head, Department of Microbiology, Virology and Immunology, I. Sechenov First Moscow State Medical University (Sechenov University)
References
1. Svitich O.A., Filina A.B., Davydova N.V. Gankovskaya L.V., Zverev V.V. The role of innate immunity factors in tumorigenesis process. Meditsinskaya immunologiya = Medical Immunology (Russia), 2018, Vol. 20, no. 2, pp. 151-162. (In Russ.) doi: 10.15789/1563-0625-2018-2-151-162.
2. Starostina E.V., Nizolenko L.F., Karpenko L.I., Ilyichev A.A. Antitumor mRNA vaccines based on neoantigens. Sibirskiy onkologicheskiy zhurnal = Siberian Journal of Oncology, 2024, Vol. 23, no. 6, pp. 149-158. (In Russ.)
3. Khashukoeva A.Z., Svitich O.A., Markova E.A. Photodynamic therapy – antiviral therapy? History of the question. Perspectives. Lazernaya meditsina = Laser Medicine, 2012, Vol. 16, no. 2, pp. 63-67. (In Russ.)
4. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, Vol. 67, no. 4, pp. 657-685.
5. Ameh T., Sayes C.M. The potential exposure and hazards of copper nanoparticles: A review. Environ. Toxicol. Pharmacol., 2019, Vol. 71, 103220. doi: 10.1016/j.etap.2019.103220.
6. Brugarolas J., Obara G., Beckermann K.E., Rini B., Lam E.T., Hamilton J., Schluep T., Yi M., Wong S., Mao Z.L., Gamelin E., Tannir N.M. A first-in-human phase 1 study of a tumor-directed RNA-interference drug against HIF2a in patients with advanced clear cell renal cell carcinoma. Clin. Cancer Res., 2024, Vol. 30, no. 11, pp. 2402-2411.
7. Buyukgolcigezli I., Tenekeci A.K., Sahin I.H. Opportunities and challenges in antibody-drug conjugates for cancer therapy: a new era for cancer treatment. Cancers, 2025. Vol. 17, no. 6, 958. doi: 10.3390/cancers17060958.
8. Che Z., Wang W., Zhang L., Lin Z. Therapeutic strategies targeting CD47-SIRPa signaling pathway in gastrointestinal cancers treatment. J. Pharm. Anal. 2025, Vol. 15, no. 1, 101099. doi: 10.1016/j.jpha.2024.101099.
9. Chen M.Y., Zheng W.Y., Liu Y.F., Li X.H., Lam M.I., Su Z., Cheung T., Ungvari G.S., Tang L., Ng C.H., Zhang Q., Xiang Y.T.. Global prevalence of poor sleep quality in cancer patients: A systematic review and meta-analysis. Gen. Hosp. Psychiatry, 2024, Vol. 87, pp. 92-102.
10. Chowaniec H., Ślubowska A., Mroczek M., Borowczyk M., Braszka M., Dworacki G., Dobosz P., Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front. Immunol., 2024, Vol. 15, 1375433. doi: 10.3389/fimmu.2024.1375433.
11. Chung H.W., Lim J.B. Role of the tumor microenvironment in the pathogenesis of gastric carcinoma. World J. Gastroenterol., 2014, Vol. 20, no. 7, pp. 1667-1680.
12. Cuiffo B., Maxwell M., Yan D., Guemiri R., Boone A., Bellet D., Rivest B., Cardia J., Robert C., Fricker S.P. Self-delivering RNAi immunotherapeutic PH-762 silences PD-1 to generate local and abscopal antitumor efficacy. Front. Immunol., 2024, Vol. 4, Vol. 15, 1501679. doi: 10.3389/fimmu.2024.1501679.
13. Curigliano G., Cardinale D., Dent S., Criscitiello C., Aseyev O., Lenihan D., Cipolla C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J. Clin., 2016, Vol. 66, no. 4, pp. 309-325.
14. de Grado A., Cencini F., Priori A. Neurology of cancer immunotherapy. Neurol. Sci., 2023, Vol. 44, no. 1, pp. 137-148.
15. Fernandez-Alarcon J., Cladera M.A., Rodriguez-Camenforte N., Sitia G., Guerra-Rebollo M., Borros S., Fornaguera C. Regulation of mitochondrial apoptosis via siRNA-loaded metallo-alginate hydrogels: A localized and synergistic antitumor therapy. Biomaterials, 2025, Vol. 318, 123164. doi: 10.1016/j.biomaterials.2025.123164.
16. Forsbach A., Nemorin J.G., Montino C., Müller C., Samulowitz U., Vicari A.P., Jurk M., Mutwiri G.K., Krieg A.M., Lipford G.B., Vollmer J. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol., 2008, Vol. 180, no. 6, pp. 3729-3738. doi: 10.4049/jimmunol.180.6.3729.
17. Fu Z., Li S., Han S., Shi C., Zhang Y. Antibody drug conjugate: the «biological missile» for targeted cancer therapy. Signal Transduct. Target. Ther., 2022, Vol. 7, no. 1, 93. doi: 10.1038/s41392-022-00947-7.
18. Gao Y., Li A., Li Y., Guo H., He L., Li K., Shcharbin D., Shi X., Shen M. Dendrimer/Copper(II) complex-mediated siRNA delivery disrupts lactate metabolism to reprogram the local immune microenvironment against tumor growth and metastasis. Biomacromolecules, 2024 Vol. 25, no. 12, pp. 7995-8005. doi: 10.1021/acs.biomac.4c01249.
19. Goodchild A., Nopper N., King A., Doan T., Tanudji M., Arndt G.M., Poidinger M., Rivory L.P., Passioura T. Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol., 2009, Vol. 10, 40.
20. Goradel N.H., Baker A.T., Arashkia A., Ebrahimi N., Ghorghanlu S., Negahdari B. Oncolytic virotherapy: Challenges and solutions. Curr. Probl. Cancer., 2021, Vol. 45, no. 1, 100639. doi: 10.1016/j.currproblcancer.2020.100639.
21. Ho W., Zhang X.Q., Xu X. Biomaterials in siRNA Delivery: A Comprehensive Review. Adv. Healthc. Mater., 2016, Vol. 5, no. 21, pp. 2715-2731.
22. Hoover E.C., Day E.S. Antibody/siRNA Nanocarriers against Wnt Signaling suppress oncogenic and stem-like behavior in triple-negative breast cancer cells. J. Biomed. Mater. Res. A, 2025 Vol. 113, no. 1, e37867. doi: 10.1002/jbm.a.37867.
23. Hu Y., Zhou T., Cai P., He Z. Neoantigens: new hope for cancer therapy. Front. Oncol., 2025, Vol. 15, 1531592. doi: 10.3389/fonc.2025.1531592.
24. Huang K.W., Hsu F.F., Qiu J.T., Chern G.J., Lee Y.A., Chang C.C., Huang Y.T., Sung Y.C., Chiang C.C., Huang R.L., Lin C.C., Dinh T.K., Huang H.C., Shih Y.C., Alson D., Lin C.Y., Lin Y.C., Chang P.C., Lin S.Y., Chen Y. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci. Adv., 2020 Vol. 6, no. 3, eaax5032. doi: 10.1126/sciadv.aax5032.
25. Janjigian Y.Y., Shitara K., Moehler M., Garrido M., Salman P., Shen L., Wyrwicz L., Yamaguchi K., Skoczylas T., Campos Bragagnoli A., Liu T., Schenker M., Yanez P., Tehfe M., Kowalyszyn R., Karamouzis M.V., Bruges R., Zander T., Pazo-Cid R., Hitre E., Feeney K., Cleary J.M., Poulart V., Cullen D., Lei M., Xiao H., Kondo K., Li M., Ajani J.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (Checkmate 649): A randomised, open-label, phase 3 trial. Lancet, Vol. 398, no. 10294, pp. 27-40.
26. Ji Y., Yang X., Li J., Lu Z., Li X., Yu J., Li N. IL-22 promotes the migration and invasion of gastric cancer cells via IL-22R1/AKT/MMP-9 signaling. Int. J. Clin. Exp. Pathol., 2014, Vol. 7, no. 7, pp. 3694-3703.
27. Jiang R., Wang H., Deng L., Hou J., Shi R., Yao M., Gao Y., Yao A., Wang X., Yu L., Sun B. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer, 2013, Vol. 13, 59. doi: 10.1186/1471-2407-13-59.
28. Jin K.T., Du W.L., Liu Y.Y., Lan H.R., Si J.X., Mou X.Z. Oncolytic virotherapy in solid tumors: the challenges and achievements. Cancers, 2021. Vol. 13, no. 4, 588. doi: 10.3390/cancers13040588.
29. Jin Y., Zhang B., Li J., Guo Z., Zhang C., Chen X., Ma L., Wang Z., Yang H., Li Y., Weng Y., Huang Y., Yan X., Fan K. Bioengineered protein nanocarrier facilitating siRNA escape from lysosomes for targeted RNAi therapy in glioblastoma. Sci. Adv., 2025, Vol. 11, no. 8, eadr9266. doi: 10.1126/sciadv.adr9266.
30. Jurk M., Chikh G., Schulte B., Kritzler A., Richardt-Pargmann D., Lampron C., Luu R., Krieg A.M., Vicari A.P., Vollmer J. Immunostimulatory potential of silencing RNAs can be mediated by a non-uridine-rich toll-like receptor 7 motif. Nucleic Acid Ther., Vol. 21, no. 3, pp. 201-214.
31. Kabilova T.O., Sen’kova A.V., Nikolin V.P., Popova N.A., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. Antitumor and Antimetastatic Effect of Small Immunostimulatory RNA against B16 Melanoma in Mice. PLoS One, 2016, Vol. 11, no. 3, e0150751. doi: 10.1371/journal.pone.0150751.
32. Kim K., Kim G., Kim J.Y., Yun H.J., Lim S.C., Choi H.S. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis, 2014, Vol. 35, no. 6, pp. 1352-1361.
33. Krummen M., Balkow S., Shen L., Heinz S., Loquai C., Probst H.C., Grabbe S. Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy. J. Leukoc. Biol., Vol. 88, no. 1, pp. 189-199.
34. Kythreotou A., Siddique A., Mauri F.A., Bower M., Pinato D.J. PD-L1. J. Clin. Pathol., 2018, Vol. 71, no. 3, pp. 189-194.
35. Lan T., Wei Z., He Y., Wan S., Liu L., Cheng B., Li R., Chen H., Liu G., Meng Z. Immunostimulatory siRNA with a uridine bulge leads to potent inhibition of HBV and activation of innate immunity. Virol. J., 2021, Vol. 18, no. 1, 37. doi: 10.1186/s12985-021-01509-z.
36. Liu Y., Li C., Lu Y., Liu C., Yang W. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front. Immunol., 2022, Vol. 13, 1016817. doi: 10.3389/fimmu.2022.1016817.
37. Mami-Chouaib F., Blanc C., Corgnac S., Hans S., Malenica I., Granier C., Tihy I., Tartour E. Resident memory T cells, critical components in tumor immunology. J. Immunother. Cancer, 2018, Vol. 6, no. 1, 87. doi: 10.1186/s40425-018-0399-6.
38. Mao B., Wang F., Zhang J., Li Q., Ying K. Long non-coding RNA human leucocyte antigen complex group-18 HCG18 (HCG18) promoted cell proliferation and migration in head and neck squamous cell carcinoma through cyclin D1-WNT pathway. Bioengineered, 2022 Vol. 13, no. 4, pp. 9425-9434.
39. Mattiuzzi C., Lippi G.. Current Cancer Epidemiology. J. Epidemiol. Glob. Health., 2019, Vol. 9, no. 4, pp. 217-222. doi: 10.2991/jegh.k.191008.001.
40. Mocellin S., Pasquali S., Rossi C.R., Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J. Natl. Cancer Inst., 2010 Vol. 102, no. 7, pp. 493-501.
41. Orditura M., Galizia G., Sforza V., Gambardella V., Fabozzi A., Laterza M.M., Andreozzi F., Ventriglia J., Savastano B., Mabilia A., Lieto E., Ciardiello F., De Vita F. Treatment of gastric cancer. World J. Gastroenterol., 2014, Vol. 20, no. 7, pp. 1635-1649.
42. Oura K., Morishita A., Tani J., Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int. J. Mol. Sci., 2021, Vol. 22, no. 11, 5801. doi: 10.3390/ijms22115801.
43. Pautier P., Motte-Rouge T., Lécuru F., Classe J.M., Ferron G., Floquet A., Kurtz J.E., Freyer G., Hardy-Bessard A.C. Prise en charge médicale de la récidive du cancer épithélial de l’ovaire: Medical management of recurrent epithelial ovarian cancer. Bull. Cancer., 2021, Vol. 108, no. 9, pp. 22-32.
44. Pereyra L., Schlottmann F., Steinberg L., Lasa J. Colorectal cancer prevention: is chat generative pretrained transformer (Chat GPT) ready to assist physicians in determining appropriate screening and surveillance recommendations? J. Clin. Gastroenterol., 2024 Vol. 58, no. 10, pp. 1022-1027.
45. Petanidis S., Anestakis D., Argyraki M., Hadzopoulou-Cladaras M., Salifoglou A. Differential expression of IL-17, 22 and 23 in the progression of colorectal cancer in patients with K-ras mutation: Ras signal inhibition and crosstalk with GM-CSF and IFN-γ. PLoS One, 2013, Vol. 8, no. 9, e73616. doi: 10.1371/journal.pone.0073616.
46. Pradhan P., Qin H., Leleux J.A., Gwak D., Sakamaki I., Kwak L.W., Roy K. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials, 2014, Vol. 35, no. 21, pp. 5491-5504.
47. Ren Q., Tian T., Wang B., Pan J., Huang Y., Zhong L., Wang Y., Wang X., Huang X. UVA-responsive Fe 3 O 4 @ ZnO nanocarrier grafted with anti-EGFR antibody for precision delivery of Nrf2-siRNA and brusatol: A novel platform for integrated photodynamic, gene, and chemotherapy. Int. J. Biol. Macromol., 2025, Vol. 305, Pt 2, 141153. doi: 10.1016/j.ijbiomac.2025.141153.
48. Saraiva M., O’Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol., 2010, Vol. 10, no. 3, pp. 170-181.
49. Sawyer K., Leahy S., Wood K.D. Progress with RNA interference for the treatment of primary hyperoxaluria. BioDrugs, 2022. Vol. 36, no. 4, pp. 437-441.
50. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol., 2005, Vol. 348, no. 5, pp. 1079-1090.
51. Strashilov S., Yordanov A. Aetiology and pathogenesis of cutaneous melanoma: current concepts and advances. Int. J. Mol. Sci., 2021 Vol. 22, no. 12, 6395. doi: 10.3390/ijms22126395.
52. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., Vol. 71, no. 3, pp. 209-249.
53. Taghavi-Farahabadi M., Mahmoudi M., Mojtabavi N., Noorbakhsh F., Ghanbarian H., Koochaki A., Hashemi S.M., Rezaei N. Enhancing the anti-tumor activity and reprogramming M2 macrophages by delivering siRNAs against SIRPa and STAT6 via M1 exosomes and combining with anti-PD-L1. Life Sci., 2025, Vol. 361, 123311. doi: 10.1016/j.lfs.2024.123311.
54. Terwoord J.D., Beyer A.M., Gutterman D.D. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol. Ther., 2022, Vol. 237, 108116. doi: 10.1016/j.pharmthera.2022.108116.
55. Valenzuela R.A., Suter S.R., Ball-Jones A.A., Ibarra-Soza J.M., Zheng Y., Beal P.A. Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem, 2015, Vol. 16, no. 2, pp. 262-267.
56. van Cutsem E., Bang Y-J., Feng-yi F., Xu J.M., Lee K-W., Jiao S-C., Chong J.L., López-Sanchez R.I., Price T., Gladkov O., Stoss O., Hill J., Ng V., Lehle M., Thomas M., Kiermaier A., Rüschoff J. Her2 screening data from toga: Targeting Her2 in gastric and gastroesophageal junction cancer. Gastric Cancer, Vol. 18, no. 3, pp. 476-484.
57. Vivier E., Spits H., Cupedo T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat. Rev. Immunol., 2009, Vol. 9, no. 4, pp. 229-234.
58. Wudhikarn K., Perales M.A. Infectious complications, immune reconstitution, and infection prophylaxis after CD19 chimeric antigen receptor T-cell therapy. Bone Marrow Transplant., 2022, Vol. 57, no. 10, pp. 1477-1488.
59. Xu X., Tang Y., Guo S., Zhang Y., Tian Y., Ni B., Wang H. Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4 + T cells correlate with pancreatic cancer progression. Pancreas, 2014, Vol. 43, no. 3, pp. 470-477.
60. Zhang S., Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater., 2025, Vol. 193, pp. 107-127.
61. Zhao J., Cui X., Zhan Q., Zhang K., Su D., Yang S., Hong B., Wang Q., Ju J., Cheng C., Li C., Wan C., Wang Y., Zhou J., Kang C. CRISPR-Cas9 library screening combined with an exosome-targeted delivery system addresses tumorigenesis/TMZ resistance in the mesenchymal subtype of glioblastoma. Theranostics. 2024 Vol. 14, no. 7, pp. 2835-2855.
62. Zhou J., Li Y., Jiang X., Xin Z., Liu W., Zhang X., Zhai Y., Zhang Z., Shi T., Xue M., Zhang M., Wu Y., Chu Y., Wang S., Jin X., Zhu W., Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater. Today Bio, 2025, Vol. 31, 101603. doi: 10.1016/j.mtbio.2025.101603.
Supplementary files
Review
For citations:
Pashkov E.A., Murzina A.A., Semenova I.B., Shatokhin M.N., Svitich O.A., Zverev V.V. Antitumor effects of small interfering RNAs. Medical Immunology (Russia). 2025;27(6):1205-1218. (In Russ.) https://doi.org/10.15789/1563-0625-AEO-3227





































