Preview

Medical Immunology (Russia)

Advanced search

ALTERATIONS IN PERIPHERAL BLOOD CD8+ T CELL SUBSETS IN PATIENTS WITH LUNG SARCOIDOSIS

https://doi.org/10.15789/1563-0625-AIP-3222

Abstract

Abstract

Sarcoidosis is a systemic inflammatory disorder of unknown etiology characterized by tissue infiltration with macrophages and lymphocytes, including CD8+ T cells, and associated non-caseating granuloma formation. The aim of the study was to investigate various peripheral blood CD8+ T cells from patients with chronic respiratory sarcoidosis using markers of T cell maturation and ‘polarization’. Peripheral blood samples were collected from 34 patients with newly diagnosed chronic sarcoidosis of the respiratory organs with the background of a natural course of disease and without immunosuppressive therapy history. The diagnosis of pulmonary sarcoidosis was performed according to the standard criteria and was confirmed by histological examination for 94,12% of patients. Peripheral venous blood samples from healthy volunteers (n=40), matched by gender and age with patients with pulmonary sarcoidosis, was used as a control group. Multicolor flow cytometry revealed that patients with sarcoidosis had decreased levels of CD45RA+CD62L+ ‘naïve’ and CD45RA–CD62L+ central memory CD8+ T cells if compared with healthy controls, as well as the frequencies of ЕМ1 (CD45RA–CD62L–CD27+CD28+) и pre-effector type 1 (CD45RA+CD62L–CD27+CD28+) cells were also reduced. Next, to assess relevant ‘polarized’ CD8+ T cell subsets, we identified Tc1 (CCR6–CXCR3+), Tc2 (CCR6–CXCR3–), Tc17 (CCR6+CXCR3–), and double-positive Tc17.1 (CCR6+CXCR3+). We found that CXCR3-expressing CD8+ T cell subsets (Tc1 and Tc17.1) were significantly decreased both in relative and absolute numbers in patients with sarcoidosis if compared to healthy controls. Oppositely, Тс2 CD8+ T cell were significantly elevated. Furthermore, the relative numbers of Tc1 cells negatively correlated with serum ACE levels (r=–0,456 with р=0,010), while Тс2 levels positively correlated with serum ACE levels (r=0,623 with р<0,001). Thus, our results indicate that CD8+ T cells may play a role in the pathogenesis of sarcoidosis. More extensive clinical and immunological comparisons are required for further systematization of the obtained data.

About the Authors

Artem Arkad’evich Rubinstein
Institute of Experimental Medicine, St.Petersburg, Russian Federation
Russian Federation

Junior Researcher, Laboratory of Cellular Immunology



Igor Vladimirovich Kudryavtsev
Institute of Experimental Medicine, St.Petersburg, Russian Federation; First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation
Russian Federation

(PhD (Biology), head of laboratory, laboratory of cellular immunology, Institute of Experimental Medicine, St.Petersburg, Russian Federation; assistant professor of department of Immunology, First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation.



Natalia Mihailovna Lazareva
Federal State Budgetary Institution "Russian Research Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency", St.Petersburg, Russian Federation
Russian Federation

PhD (Medicine), Head of the Clinical Diagnostic Laboratory of Molecular Genetic Research at the Clinic



Tatyana Viktorovna Akisheva
Institute of Experimental Medicine, St.Petersburg, Russian Federation
Russian Federation

Junior Researcher, Laboratory of Cellular Immunology



Olga Petrovna Baranova
First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation
Russian Federation

PhD (Medicine), senior research associate, Research Institute of Interstitial and Orphan Diseases, assistant professor, department of Pulmonology



Tatyana Pavlovna Ses’
First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation
Russian Federation

PhD (Biology), Professor, professor of department of Immunology



Mikhail Mikhailovich Ilkovich
First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation
Russian Federation

PhD, MD (Medicine), Professor, Director, Research Institute of Interstitial and Orphan Diseases, Head of the Department of Pulmonology



Areg Artemovich Totolian
First St. Petersburg State I. Pavlov Medical University, St.Petersburg, Russian Federation; St. Petersburg Pasteur Institute, St.Petersburg, Russian Federation
Russian Federation

PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Director, Saint Petersburg Pasteur Institute; Head, Department of Immunology, First St. Petersburg State I. Pavlov Medical University, St. Petersburg, Russian Federation



References

1. Лазарева Н.М., Баранова О.П., Кудрявцев И.В., Арсентьева Н.А., Любимова Н.Е., Сесь Т.П., Илькович М.М., Тотолян А.А. Особенности цитокинового профиля при саркоидозе. Медицинская иммунология, 2020, Т. 22, № 5, С. 993-1002. [Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. Features of cytokine profile in patients with sarcoidosis. Medical Immunology (Russia), 2020, Vol. 22, no. 5, pp. 993-1002 (In Russ.)] https://doi.org/10.15789/1563-0625-FOC-2064.

2. Лазарева Н.М., Баранова О.П., Кудрявцев И.В., Арсентьева Н.А., Любимова Н.Е., Сесь Т.П., Илькович М.М., Тотолян А.А. Лиганды хемокинового рецептора CXCR3 при саркоидозе. Медицинская иммунология, 2021, Т. 23, № 1, С. 73-86. [Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. CXCR3 chemokine receptor ligands in sarcoidosis. Medical Immunology (Russia), 2021, Vol. 23, no. 1, pp. 73-86 (In Russ.)] https://doi.org/10.15789/1563-0625-CCR-2181

3. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Баранова О.П., Борисов С.Е., Геппе Н.А., Визель А.А., Визель И.Ю., Зайцев А.А., Кравченко Н.Ю., Илькович М.М., Ловачева О.В., Малахов А.Б., Малявин А.Г., Петров Д.В., Романов В.В., Сивокозов И.В., Самсонова М.В., Соловьева И.П., Степанян И.Э., Терпигорев С.А., Тюрин И.Е., Французевич Л.Я., Черняев А.Л., Шмелев Е.И., Шмелева Н.М. Саркоидоз: федеральные клинические рекомендации по диагностике и лечению. Пульмонология, 2022, Т. 32, № 6, С. 806–833. [Chuchalin A.G., Avdeev S.N., Aisanov Z.R., Baranova O.P., Borisov S.E., Geppe N.A., Vizel’ A.A., Vizel’ I.Yu., Zaicev A.A., Kravchenko N.Y., Ilkovich M.M., Lovacheva O.V., Malakhov A.B., Malyavin A.G., Petrov D.V., Romanov V.V., Sivokozov I.V., Samsonova M.V., Solovieva I.P., Stepanyan I.E., Terpigorev S.A., Tyurin I.E., Frantsuzevich L.Ya., Chernyaev A.L., Shmelev E.I., Shmeleva N.M. Sarcoidosis: federal clinical guidelines for diagnosis and treatment. Pulmonologiya, 2022, Vol. 32, no. 6, pp. 806-833 (In Russ.)]. https://doi.org/10.18093/0869-0189-2022-32-6-806-833.

4. Agostini C., Cassatella M., Zambello R., Trentin L., Gasperini S., Perin A., Piazza F., Siviero M., Facco M., Dziejman M., Chilosi M., Qin S., Luster A.D., Semenzato G. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J Immunol., 1998, Vol. 161, no. 11, pp. 6413-6420. https://pubmed.ncbi.nlm.nih.gov/9834133/

5. Alduenda J.L., Choreño-Parra J.A., Medina-Quero K., Zúñiga J., Chávez-Galán L. Leukocytes from patients with drug-sensitive and multidrug-resistant tuberculosis exhibit distinctive profiles of chemokine receptor expression and migration capacity. J Immunol Res., 2021, Vol. 2021, pp. 6654220. doi: 10.1155/2021/6654220.

6. Amber K.T., Bloom R., Mrowietz U., Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J Eur Acad Dermatol Venereol., 2015, Vol. 29, pp. 2104-2111. doi: 10.1111/jdv.13246.

7. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol., 2015, Vol. 135, pp. 626-635. doi: 10.1016/j.jaci.2014.11.001

8. Antoniou K.M., Tsiligianni I., Kyriakou D., Tzanakis N., Tzouvelekis A., Siafakas N.M., Bouros D. Perforin down-regulation and adhesion molecules activation in pulmonary sarcoidosis: an induced sputum and BAL study. Chest, 2006, Vol. 129, pp. 1592-1598. doi: 10.1378/chest.129.6.1592.

9. Arger N.K., Ho M.E., Allen I.E., Benn B.S., Woodruff P.G., Koth L.L. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med., 2020, Vol. 161, pp. 105822. doi: 10.1016/j.rmed.2019.105822.

10. Baughman R.P., Valeyre D., Korsten P., Mathioudakis A.G., Wuyts W.A., Wells A., Rottoli P., Nunes H., Lower E.E., Judson M.A., Israel-Biet D., Grutters J.C., Drent M., Culver D.A., Bonella F., Antoniou K., Martone F., Quadder B., Spitzer G., Nagavci B., Tonia T., Rigau D., Ouellette D.R. ERS clinical practice guidelines on treatment of sarcoidosis. Eur Respir J., 2021, Vol. 58, pp. 2004079. doi: 10.1183/13993003.04079-2020.

11. Calender A., Weichhart T., Valeyre D., Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J Clin Med., 2020, Vol. 9, pp. 2633. doi: 10.3390/jcm9082633.

12. Chan W.L., Pejnovic N., Lee C.A., Al-Ali N.A. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J Immunol., 2001, Vol. 167, no. 3, pp. 1238-1244. doi: 10.4049/jimmunol.167.3.1238.

13. Chen C., Luo N., Dai F., Zhou W., Wu X., Zhang J. Advance in pathogenesis of sarcoidosis: Triggers and progression. Heliyon, 2024, Vol. 10, no. 5, pp. e27612. doi: 10.1016/j.heliyon.2024.e27612.

14. Crouser E.D., Maier L.A., Wilson K.C., Bonham C.A., Morgenthau A.S., Patterson K.C., Abston E., Bernstein R.C., Blankstein R., Chen E.S., Culver D.A., Drake W., Drent M., Gerke A.K., Ghobrial M., Govender P., Hamzeh N., James W.E., Judson M.A., Kellermeyer L., Knight S., Koth L.L., Poletti V., Raman S.V., Tukey M.H., Westney G.E., Baughman R.P. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med., 2020, Vol. 201, no. 8, pp. e26-e51. doi: 10.1164/rccm.202002-0251ST.

15. d'Alessandro M., Bergantini L., Cameli P., Mezzasalma F., Refini R.M., Pieroni M., Sestini P., Bargagli E. Adaptive immune system in pulmonary sarcoidosis – Comparison of peripheral and alveolar biomarkers. Clin Exp Immunol., 2021, Vol. 205, no. 3, pp. 406-416. doi: 10.1111/cei.13635.

16. Della Zoppa M., Bertuccio F.R., Campo I., Tousa F., Crescenzi M., Lettieri S., Mariani F., Corsico A.G., Piloni D., Stella G.M. Phenotypes and serum biomarkers in sarcoidosis. Diagnostics (Basel), 2024, Vol. 14, no. 7, pp. 709. doi: 10.3390/diagnostics14070709.

17. Esendagli D., Koksal D., Emri S. Recovery of pulmonary and skin lesions of sarcoidosis after thymectomy. Acta Clin Belg., 2016, Vol. 71, no. 6, pp. 441-443. doi:10.1080/17843286.2016.1152671.

18. Facco M., Baesso I., Miorin M., Bortoli M., Cabrelle A., Boscaro E., Gurrieri C., Trentin L., Zambello R., Calabrese F., Cassatella M.A., Semenzato G., Agostini C. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. J Leukoc Biol., 2007, Vol. 82, no. 4, pp. 946-955. doi: 10.1189/jlb.0307133.

19. Garman L., Pelikan R.C., Rasmussen A., Lareau C.A., Savoy K.A., Deshmukh U.S., Bagavant H., Levin A.M., Daouk S., Drake W.P., Montgomery C.G. Single cell transcriptomics implicate novel monocyte and T cell immune dysregulation in sarcoidosis. Front Immunol., 2020, Vol. 11, pp. 567342. doi: 10.3389/fimmu.2020.567342.

20. Hato T., Yamaguchi M., Sugiyama A., Aoki K., Inoue Y., Fukuda H., Gika M., Higashi M., Nakayama M. Hatched "egg" of thymoma with sarcoidosis. World J Surg Oncol., 2019, Vol. 17, no. 1, pp. 151. doi: 10.1186/s12957-019-1696-3.

21. Hauber H.P., Gholami D., Meyer A., Pforte A. Increased interleukin-13 expression in patients with sarcoidosis. Thorax, 2003, Vol. 58, no. 6, pp. 519-524. doi: 10.1136/thorax.58.6.519.

22. Kamphuis L.S., van Zelm M.C., Lam K.H., Rimmelzwaan G.F., Baarsma G.S., Dik W.A., Thio H.B., van Daele P.L., van Velthoven M.E., Batstra M.R., van Hagen P.M., van Laar J.A. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am J Respir Crit Care Med., 2013, Vol. 187, no. 4, pp. 406-416. doi: 10.1164/rccm.201206-1024OC.

23. Kishore A., Petrek M. Next-Generation Sequencing Based HLA Typing: Deciphering Immunogenetic Aspects of Sarcoidosis. Front Genet., 2018, Vol. 9, pp. 503. doi: 10.3389/fgene.2018.00503.

24. Koh C.H., Lee S., Kwak M., Kim B.S., Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med., 2023, Vol. 55, no. 11, pp. 2287-2299. doi: 10.1038/s12276-023-01105-x.

25. Krausgruber T., Redl A., Barreca D., Doberer K., Romanovskaia D., Dobnikar L., Guarini M., Unterluggauer L., Kleissl L., Atzmüller D., Mayerhofer C., Kopf A., Saluzzo S., Lim C.X., Rexie P., Weichhart T., Bock C., Stary G. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity, 2023, Vol. 56, no. 2, pp. 289-306.e7. doi: 10.1016/j.immuni.2023.01.014.

26. Kudryavtsev I., Benevolenskaya S., Serebriakova M., Grigor'yeva I., Kuvardin E., Rubinstein A., Golovkin A., Kalinina O., Zaikova E., Lapin S., Maslyanskiy A. Circulating CD8+ T Cell Subsets in Primary Sjögren's Syndrome. Biomedicines, 2023, Vol. 11, no. 10, pp. 2778. doi: 10.3390/biomedicines11102778.

27. Kudryavtsev I., Zinchenko Y., Serebriakova M., Akisheva T., Rubinstein A., Savchenko A., Borisov A., Belenjuk V., Malkova A., Yablonskiy P., Kudlay D., Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel), 2023, Vol. 13, no. 18, pp. 2961. doi: 10.3390/diagnostics13182961.

28. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses, 2022, Vol. 14, no. 9, pp. 1906. doi: 10.3390/v14091906.

29. Kumaresan P.R., da Silva T.A., Kontoyiannis D.P. Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells. Front Immunol., 2018, Vol. 8, pp. 1939. doi:10.3389/fimmu.2017.01939.

30. Kurukumbi M., Weir R.L., Kalyanam J., Nasim M., Jayam-Trouth A. Rare association of thymoma, myasthenia gravis and sarcoidosis : a case report. J Med Case Rep., 2008, Vol. 2, pp. 245. doi:10.1186/1752-1947-2-245.

31. Lazareva N.M., Kudryavtsev I.V., Baranova O.P., Isakov D.V., Serebriakova M.K., Bazhanov A.A., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. Sarcoidosis clinical picture governs alterations in type 17 T helper cell subset composition and cytokine profile. Medical Immunology (Russia), 2023, Vol. 25, no. 5, pp. 1049-1058. https://doi.org/10.15789/1563-0625-SCP-2694.

32. Levin A.M., Iannuzzi M.C., Montgomery C.G., Trudeau S., Datta I., McKeigue P., Fischer A., Nebel A., Rybicki B.A. Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun., 2013, Vol. 14, no. 1, pp. 13-18. doi: 10.1038/gene.2012.48.

33. Locke L.W., Crouser E.D., White P., Julian M.W., Caceres E.G., Papp A.C., Le V.T., Sadee W., Schlesinger L.S. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am J Respir Cell Mol Biol., 2019, Vol. 60, pp. 84-95. doi: 10.1165/rcmb.2018-0053OC.

34. Loyal L., Warth S., Jürchott K., Mölder F., Nikolaou C., Babel N., Nienen M., Durlanik S., Stark R., Kruse B., Frentsch M., Sabat R., Wolk K., Thiel A. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nat Commun., 2020, Vol. 11, pp. 6357. doi: 10.1038/s41467-020-19002-6.

35. Melani A.S., Simona A., Armati M., d'Alessandro M., Bargagli E. A comprehensive review of sarcoidosis diagnosis and monitoring for the pulmonologist. Pulm Ther., 2021, Vol. 7, no. 2, pp. 309-324. doi: 10.1007/s41030-021-00161-w.

36. Miedema J.R., Kaiser Y., Broos C.E., Wijsenbeek M.S., Grunewald J., Kool M. Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe? J Autoimmun., 2018, Vol. 87, pp. 82-96. doi: 10.1016/j.jaut.2017.12.012.

37. Mittrücker H.W., Visekruna A., Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp (Warsz)., 2014, Vol. 62, pp. 449-458. doi: 10.1007/s00005-014-0293-y.

38. Morar R., Duarte R., Wadee A.A., Feldman C. HLA class I and class II antigens in sarcoidosis. S Afr Med J., 2022, Vol. 112, pp. 904-910. doi: 10.7196/SAMJ.2022.v112i12.16586.

39. Parasa V.R., Forsslund H., Enger T., Lorenz D., Kullberg S., Eklund A., Sköld M., Wahlström J., Grunewald J., Brighenti S. Enhanced CD8+ cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respir Med., 2018, Vol. 138S, pp. S38-S44. doi: 10.1016/j.rmed.2017.10.006.

40. Patterson K.C., Franek B.S., Müller-Quernheim J., Sperling A.I., Sweiss N.J., Niewold T.B. Circulating cytokines in sarcoidosis: phenotype-specific alterations for fibrotic and non-fibrotic pulmonary disease. Cytokine, 2013, Vol. 61, pp. 906-111. doi: 10.1016/j.cyto.2012.12.016.

41. Piotrowski W.J., Młynarski W., Fendler W., Wyka K., Marczak J., Górski P., Antczak A. Chemokine receptor CXCR3 ligands in bronchoalveolar lavage fluid: associations with radiological pattern, clinical course, and prognosis in sarcoidosis. Pol Arch Med Wewn., 2014, Vol. 124, no. 7-8, pp. 395-402. doi: 10.20452/pamw.2349.

42. Qin S., Chen R., Jiang Y., Zhu H., Chen L., Chen Y., Shen M., Lin X. Multifunctional T cell response in active pulmonary tuberculosis patients. Int Immunopharmacol., 2021, Vol. 99, pp. 107898. doi: 10.1016/j.intimp.2021.107898.

43. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R., Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med., 2016, Vol. 193, no. 11, pp. 1281-1291. doi: 10.1164/rccm.201507-1499OC.

44. Romero P., Zippelius A., Kurth I., Pittet M.J., Touvrey C., Iancu E.M., Corthesy P., Devevre E., Speiser D.E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol., 2007, Vol. 178, no. 7, pp. 4112-4119. doi: 10.4049/jimmunol.178.7.4112.

45. Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front Biosci (Landmark Ed), 2024, Vol. 29, no. 8, pp. 301. doi:10.31083/j.fbl2908301.

46. Rufer N., Zippelius A., Batard P., Pittet M.J., Kurth I., Corthesy P., Cerottini J.C., Leyvraz S., Roosnek E., Nabholz M., Romero P. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood, 2003, Vol. 102, no. 5, pp. 1779-1787. doi: 10.1182/blood-2003-02-0420.

47. Sakthivel P., Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr Opin Hematol., 2017, Vol. 24, no. 1, pp. 59-65. doi: 10.1097/MOH.0000000000000301.

48. Shamaei M., Mortaz E., Pourabdollah M., Garssen J., Tabarsi P., Velayati A., Adcock I.M. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: A new aspect of macrophage heterogeneity. Hum Immunol., 2018, Vol. 79, no. 1, pp. 63-69. doi: 10.1016/j.humimm.2017.10.009.

49. She Y.X., Yu Q.Y., Tang X.X. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov., 2021, Vol. 7, no. 1, pp. 52. doi: 10.1038/s41420-021-00437-9.

50. Starshinova A., Borozinets A., Kulpina A., Sereda V., Rubinstein A., Kudryavtsev I., Kudlay D. Bronchial Asthma and COVID-19: etiology, pathological triggers, and therapeutic considerations. Pathophysiology, 2024, Vol. 31, no. 2, pp. 269-287. doi: 10.3390/pathophysiology31020020.

51. Starshinova A.A., Malkova A.M., Basantsova N.Y., Zinchenko Y.S., Kudryavtsev I.V., Ershov G.A., Soprun L.A., Mayevskaya V.A., Churilov L.P., Yablonskiy P.K. Sarcoidosis as an Autoimmune Disease. Front Immunol., 2020, Vol. 10, pp. 2933. doi: 10.3389/fimmu.2019.02933

52. Ten Berge B., Paats M.S., Bergen I.M., van den Blink B., Hoogsteden H.C., Lambrecht B.N., Hendriks R.W., Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford), 2012, Vol. 51, no. 1, pp. 37-46. doi: 10.1093/rheumatology/ker316.

53. Terao I., Hashimoto S., Horie T. Effect of GM-CSF on TNF-alpha and IL-1-beta production by alveolar macrophages and peripheral blood monocytes from patients with sarcoidosis. Int Arch Allergy Immunol., 1993, Vol. 102, no. 3, pp. 242-248. doi: 10.1159/000236532.

54. Tøndell A., Moen T., Børset M., Salvesen Ø., Rø A.D., Sue-Chu M. Bronchoalveolar lavage fluid IFN-γ+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm., 2014, Vol. 2014, pp. 438070. doi: 10.1155/2014/438070.

55. Valeyre D., Bernaudin J.F., Brauner M., Nunes H., Jeny F. Infectious Complications of Pulmonary Sarcoidosis. J Clin Med., 2024, Vol. 13, no. 2, pp. 342. doi: 10.3390/jcm13020342

56. van der Ploeg E.K., Krabbendam L., Vroman H., van Nimwegen M., de Bruijn M.J.W., de Boer G.M., Bergen I.M., Kool M., Tramper-Standers G.A., Braunstahl G.J., Huylebroeck D., Hendriks R.W., Stadhouders R. Type-2 CD8+ T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat Commun., 2023, Vol. 14, pp. 5137. doi: 10.1038/s41467-023-40820-x.

57. Welsh K.J., Risin S.A., Actor J.K., Hunter R.L. Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin Dev Immunol., 2011, Vol. 2011, pp. 307631. doi:10.1155/2011/307631

58. Zhang H., Costabel U., Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front Immunol., 2021, Vol. 12, pp. 788502. doi: 10.3389/fimmu.2021.788502.


Supplementary files

1. 3222
Subject
Type Other
Download (3MB)    
Indexing metadata ▾

Review

For citations:


Rubinstein A.A., Kudryavtsev I.V., Lazareva N.M., Akisheva T.V., Baranova O.P., Ses’ T.P., Ilkovich M.M., Totolian A.A. ALTERATIONS IN PERIPHERAL BLOOD CD8+ T CELL SUBSETS IN PATIENTS WITH LUNG SARCOIDOSIS. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-AIP-3222

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)