Preview

Medical Immunology (Russia)

Advanced search

Alterations in peripheral blood CD8+T cell subsets in patients with lung sarcoidosis

https://doi.org/10.15789/1563-0625-AIP-3222

Abstract

Sarcoidosis is a systemic inflammatory disorder of unknown etiology characterized by tissue infiltration with macrophages and lymphocytes, including CD8+T cells, and associated non-caseous granuloma formation. The aim of the study was to investigate various peripheral blood CD8+T cells from patients with chronic respiratory sarcoidosis using markers of T cell maturation and ‘polarization’. Peripheral blood samples were collected from 34 patients with newly diagnosed chronic sarcoidosis of respiratory organs with the background of a natural course of disease, and without a history of immunosuppressive therapy. The diagnosis of pulmonary sarcoidosis was performed according to the standard criteria and was confirmed by histological examination for 94.1% of patients. Peripheral venous blood samples from healthy, gender- and age-matched volunteers (n = 40), were used as control specimens. Multicolor flow cytometry revealed that patients with sarcoidosis had decreased levels of CD45RA+CD62L+ ‘naïve’ and CD45RA-CD62L+ central memory CD8+T cells as compared with healthy controls. Moreover, the frequencies of ЕМ1 (CD45RA-CD62L-CD27+CD28+) and pre-effector type 1 (CD45RA+CD62L-CD27+CD28+) cells were also reduced. In order to assess the relevant ‘polarized’ CD8+T cell subsets, we have specified the Tc1 (CCR6-CXCR3+), Tc2 (CCR6-CXCR3-), Tc17 (CCR6+CXCR3-), and double-positive Tc17.1 (CCR6+CXCR3+) cell populations. The relative and absolute numbers of CXCR3-expressing CD8+T cell subsets (Tc1 and Tc17.1 were found to be significantly decreased in patients with sarcoidosis if compared to healthy controls. By contrary, Тс2 CD8+T cell contents were significantly elevated. Furthermore, the relative numbers of Tc1 cells negatively correlated with serum ACE levels (r = -0.456; р = 0.01), whereas Тс2 levels positively correlated with serum ACE levels (r = 0.623; р < 0.001). Thus, our results indicate that CD8+T cells may play a role in pathogenesis of sarcoidosis. More extensive clinical and immunological comparisons are required for further systematization of the obtained data.

About the Authors

A. A. Rubinstein
Institute of Experimental Medicine
Russian Federation

Junior Researcher, Laboratory of Cellular Immunology



I. V. Kudryavtsev
Institute of Experimental Medicine; First St. Petersburg State I. Pavlov Medical University
Russian Federation

PhD (Biology), Head, Laboratory of Cellular Immunology



N. M. Lazareva
Russian Research Institute of Hematology and Transfusiology, Federal Medical-Biological Agency
Russian Federation

PhD (Medicine), Head, Clinic’s Molecular Genetic Research Laboratory, Clinical Laboratory Diagnostics Physician



T. V. Akisheva
Institute of Experimental Medicine
Russian Federation

Junior Researcher, Laboratory of Cellular Immunology



O. P. Baranova
First St. Petersburg State I. Pavlov Medical University
Russian Federation

PhD (Medicine), Senior Researcher of the Research Institute of Interstitial and Orphan Diseases, Associate Professor, Department of Pulmonology



T. P. Ses’
First St. Petersburg State I. Pavlov Medical University
Russian Federation

MD, PhD (Biology), Professor, Department of Immunology



M. M. Ilkovich
First St. Petersburg State I. Pavlov Medical University
Russian Federation

PhD, MD (Medicine), Professor, Director of the Research Institute of Interstitial and Orphan Diseases, Head of the Department of Pulmonology



Areg A. Totolian
First St. Petersburg State I. Pavlov Medical University; Saint Petersburg Pasteur Institute
Russian Federation

PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Head, Laboratory of Molecular Immunology, Director, Saint Petersburg Pasteur Institute; Head, Department of Immunology, First St. Petersburg State I. Pavlov Medical University



References

1. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. Features of cytokine profile in patients with sarcoidosis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2020, Vol. 22, no. 5, pp. 993-1002. (In Russ.) doi: 10.15789/1563-0625-FOC-2064.

2. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. CXCR3 chemokine receptor ligands in sarcoidosis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2021, Vol. 23, no. 1, pp. 73-86. (In Russ.) doi: 10.15789/1563-0625-CCR-2181.

3. Chuchalin A.G., Avdeev S.N., Aisanov Z.R., Baranova O.P., Borisov S.E., Geppe N.A., Vizel’ A.A., Vizel’ I.Yu., Zaicev A.A., Kravchenko N.Y., Ilkovich M.M., Lovacheva O.V., Malakhov A.B., Malyavin A.G., Petrov D.V., Romanov V.V., Sivokozov I.V., Samsonova M.V., Solovieva I.P., Stepanyan I.E., Terpigorev S.A., Tyurin I.E., Frantsuzevich L.Ya., Chernyaev A.L., Shmelev E.I., Shmeleva N.M. Sarcoidosis: federal clinical guidelines for diagnosis and treatment. Pulmonologiya = Pulmonologiya, 2022, Vol. 32, no. 6, pp. 806-833. (In Russ.)

4. Agostini C., Cassatella M., Zambello R., Trentin L., Gasperini S., Perin A., Piazza F., Siviero M., Facco M., Dziejman M., Chilosi M., Qin S., Luster A.D., Semenzato G. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J. Immunol., 1998, Vol. 161, no. 11, pp. 6413-6420.

5. Alduenda J.L., Choreño-Parra J.A., Medina-Quero K., Zúñiga J., Chávez-Galán L. Leukocytes from patients with drug-sensitive and multidrug-resistant tuberculosis exhibit distinctive profiles of chemokine receptor expression and migration capacity. J. Immunol. Res., 2021, Vol. 2021, 6654220. doi: 10.1155/2021/6654220.

6. Amber K.T., Bloom R., Mrowietz U., Hertl M. TNF-α: a treatment target or cause of sarcoidosis? J. Eur. Acad. Dermatol. Venereol., 2015, Vol. 29, no. 11, pp. 2104-2111.

7. Annunziato F., Romagnani C., Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol., 2015, Vol. 135, no. 3, pp. 626-635.

8. Antoniou K.M., Tsiligianni I., Kyriakou D., Tzanakis N., Tzouvelekis A., Siafakas N.M., Bouros D. Perforin down-regulation and adhesion molecules activation in pulmonary sarcoidosis: an induced sputum and BAL study. Chest, 2006, Vol. 129, no. 6, pp. 1592-1598.

9. Arger N.K., Ho M.E., Allen I.E., Benn B.S., Woodruff P.G., Koth L.L. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir. Med., 2020, Vol. 161, 105822. doi: 10.1016/j.rmed.2019.105822.

10. Baughman R.P., Valeyre D., Korsten P., Mathioudakis A.G., Wuyts W.A., Wells A., Rottoli P., Nunes H., Lower E.E., Judson M.A., Israel-Biet D., Grutters J.C., Drent M., Culver D.A., Bonella F., Antoniou K., Martone F., Quadder B., Spitzer G., Nagavci B., Tonia T., Rigau D., Ouellette D.R. ERS clinical practice guidelines on treatment of sarcoidosis. Eur. Respir. J., 2021, Vol. 58, no. 6, 2004079. doi: 10.1183/13993003.04079-2020.

11. Calender A., Weichhart T., Valeyre D., Pacheco Y. Current insights in genetics of sarcoidosis: functional and clinical impacts. J. Clin. Med., 2020, Vol. 9, no. 8, 2633. doi: 10.3390/jcm9082633.

12. Chan W.L., Pejnovic N., Lee C.A., Al-Ali N.A. Human IL-18 receptor and ST2L are stable and selective markers for the respective type 1 and type 2 circulating lymphocytes. J. Immunol., 2001, Vol. 167, no. 3, pp. 1238-1244.

13. Chen C., Luo N., Dai F., Zhou W., Wu X., Zhang J. Advance in pathogenesis of sarcoidosis: Triggers and progression. Heliyon, 2024, Vol. 10, no. 5, e27612. doi: 10.1016/j.heliyon.2024.e27612.

14. Crouser E.D., Maier L.A., Wilson K.C., Bonham C.A., Morgenthau A.S., Patterson K.C., Abston E., Bernstein R.C., Blankstein R., Chen E.S., Culver D.A., Drake W., Drent M., Gerke A.K., Ghobrial M., Govender P., Hamzeh N., James W.E., Judson M.A., Kellermeyer L., Knight S., Koth L.L., Poletti V., Raman S.V., Tukey M.H., Westney G.E., Baughman R.P. Diagnosis and detection of sarcoidosis. An official american thoracic society clinical practice guideline. Am. J. Respir. Crit. Care Med., 2020, Vol. 201, no. 8, pp. e26-e51.

15. d’Alessandro M., Bergantini L., Cameli P., Mezzasalma F., Refini R.M., Pieroni M., Sestini P., Bargagli E. Adaptive immune system in pulmonary sarcoidosis – Comparison of peripheral and alveolar biomarkers. Clin. Exp. Immunol., 2021, Vol. 205, no. 3, pp. 406-416.

16. Della Zoppa M., Bertuccio F.R., Campo I., Tousa F., Crescenzi M., Lettieri S., Mariani F., Corsico A.G., Piloni D., Stella G.M. Phenotypes and serum biomarkers in sarcoidosis. Diagnostics, 2024, Vol. 14, no. 7, 709. doi: 10.3390/diagnostics14070709.

17. Esendagli D., Koksal D., Emri S. Recovery of pulmonary and skin lesions of sarcoidosis after thymectomy. Acta Clin. Belg., 2016, Vol. 71, no. 6, pp. 441-443.

18. Facco M., Baesso I., Miorin M., Bortoli M., Cabrelle A., Boscaro E., Gurrieri C., Trentin L., Zambello R., Calabrese F., Cassatella M.A., Semenzato G., Agostini C. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. J. Leukoc. Biol., 2007, Vol. 82, no. 4, pp. 946-955.

19. Garman L., Pelikan R.C., Rasmussen A., Lareau C.A., Savoy K.A., Deshmukh U.S., Bagavant H., Levin A.M., Daouk S., Drake W.P., Montgomery C.G. Single cell transcriptomics implicate novel monocyte and T cell immune dysregulation in sarcoidosis. Front. Immunol., 2020, Vol. 11, 567342. doi: 10.3389/fimmu.2020.567342.

20. Hato T., Yamaguchi M., Sugiyama A., Aoki K., Inoue Y., Fukuda H., Gika M., Higashi M., Nakayama M. Hatched “egg” of thymoma with sarcoidosis. World J. Surg. Oncol., 2019, Vol. 17, no. 1, 151. doi: 10.1186/s12957-019-1696-3.

21. Hauber H.P., Gholami D., Meyer A., Pforte A. Increased interleukin-13 expression in patients with sarcoidosis. Thorax, 2003, Vol. 58, no. 6, pp. 519-524.

22. Kamphuis L.S., van Zelm M.C., Lam K.H., Rimmelzwaan G.F., Baarsma G.S., Dik W.A., Thio H.B., van Daele L., van Velthoven M.E., Batstra M.R., van Hagen P.M., van Laar J.A. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am. J. Respir. Crit. Care Med., 2013, Vol. 187, no. 4, pp. 406-416.

23. Kishore A., Petrek M. Next-generation sequencing based HLA typing: Deciphering immunogenetic aspects of sarcoidosis. Front. Genet., 2018, Vol. 9, 503. doi: 10.3389/fgene.2018.00503.

24. Koh C.H., Lee S., Kwak M., Kim B.S., Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp. Mol. Med., 2023, Vol. 55, no. 11, pp. 2287-2299.

25. Krausgruber T., Redl A., Barreca D., Doberer K., Romanovskaia D., Dobnikar L., Guarini M., Unterluggauer L., Kleissl L., Atzmüller D., Mayerhofer C., Kopf A., Saluzzo S., Lim C.X., Rexie P., Weichhart T., Bock C., Stary G. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity, 2023, Vol. 56, no. 2, pp. 289-306.e7.

26. Kudryavtsev I., Benevolenskaya S., Serebriakova M., Grigor’yeva I., Kuvardin E., Rubinstein A., Golovkin A., Kalinina O., Zaikova E., Lapin S., Maslyanskiy A. Circulating CD8+ T Cell Subsets in Primary Sjögren’s Syndrome. Biomedicines, 2023, Vol. 11, no. 10, 2778. doi: 10.3390/biomedicines11102778.

27. Kudryavtsev I., Zinchenko Y., Serebriakova M., Akisheva T., Rubinstein A., Savchenko A., Borisov A., Belenjuk V., Malkova A., Yablonskiy P., Kudlay D., Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics, 2023, Vol. 13, no. 18, 2961. doi: 10.3390/diagnostics13182961.

28. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 Patients. Viruses, 2022, Vol. 14, no. 9, 1906. doi: 10.3390/v14091906.

29. Kumaresan P.R., da Silva T.A., Kontoyiannis D.P. Methods of controlling invasive fungal infections using CD8+ T Cells. Front. Immunol., 2018, Vol. 8, 1939. doi: 10.3389/fimmu.2017.01939.

30. Kurukumbi M., Weir R.L., Kalyanam J., Nasim M., Jayam-Trouth A. Rare association of thymoma, myasthenia gravis and sarcoidosis: a case report. J. Med. Case Rep., 2008, Vol. 2, 245. doi: 10.1186/1752-1947-2-245.

31. Lazareva N.M., Kudryavtsev I.V., Baranova O.P., Isakov D.V., Serebriakova M.K., Bazhanov A.A., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. Sarcoidosis clinical picture governs alterations in type 17 T helper cell subset composition and cytokine profile. Medical Immunology (Russia), 2023, Vol. 25, no. 5, pp. 1049-1058. doi: 10.15789/1563-0625-SCP-2694.

32. Levin A.M., Iannuzzi M.C., Montgomery C.G., Trudeau S., Datta I., McKeigue P., Fischer A., Nebel A., Rybicki B.A. Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun., 2013, Vol. 14, no. 1, pp. 13-18.

33. Locke L.W., Crouser E.D., White P., Julian M.W., Caceres E.G., Papp A.C., Le V.T., Sadee W., Schlesinger L.S. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am. J. Respir. Cell Mol. Biol., 2019, Vol. 60, no. 1, pp. 84-95.

34. Loyal L., Warth S., Jürchott K., Mölder F., Nikolaou C., Babel N., Nienen M., Durlanik S., Stark R., Kruse B., Frentsch M., Sabat R., Wolk K., Thiel A. SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8+ T cells. Nat. Commun., 2020, Vol. 11, no. 1, 6357. doi: 10.1038/s41467-020-19002-6.

35. Melani A.S., Simona A., Armati M., d’Alessandro M., Bargagli E. A comprehensive review of sarcoidosis diagnosis and monitoring for the pulmonologist. Pulm. Ther., 2021, Vol. 7, no. 2, pp. 309-324.

36. Miedema J.R., Kaiser Y., Broos C.E., Wijsenbeek M.S., Grunewald J., Kool M. Th17-lineage cells in pulmonary sarcoidosis and Löfgren’s syndrome: Friend or foe? J. Autoimmun., 2018, Vol. 87, pp. 82-96.

37. Mittrücker H.W., Visekruna A., Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch. Immunol. Ther. Exp., 2014, Vol. 62, no. 6, pp. 449-458.

38. Morar R., Duarte R., Wadee A.A., Feldman C. HLA class I and class II antigens in sarcoidosis. S. Afr. Med. J., 2022, Vol. 112, no. 12, pp. 904-910.

39. Parasa V.R., Forsslund H., Enger T., Lorenz D., Kullberg S., Eklund A., Sköld M., Wahlström J., Grunewald J., Brighenti S. Enhanced CD8+ cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren’s disease. Respir. Med., 2018, Vol. 138S, pp. S38-S44.

40. Patterson K.C., Franek B.S., Müller-Quernheim J., Sperling A.I., Sweiss N.J., Niewold T.B. Circulating cytokines in sarcoidosis: phenotype-specific alterations for fibrotic and non-fibrotic pulmonary disease. Cytokine, 2013, Vol. 61, no. 3, pp. 906-111.

41. Piotrowski W.J., Młynarski W., Fendler W., Wyka K., Marczak J., Górski P., Antczak A. Chemokine receptor CXCR3 ligands in bronchoalveolar lavage fluid: associations with radiological pattern, clinical course, and prognosis in sarcoidosis. Pol. Arch. Med. Wewn., 2014, Vol. 124, no. 7-8, pp. 395-402.

42. Qin S., Chen R., Jiang Y., Zhu H., Chen L., Chen Y., Shen M., Lin X. Multifunctional T cell response in active pulmonary tuberculosis patients. Int. Immunopharmacol., 2021, Vol. 99, 107898. doi: 10.1016/j.intimp.2021.107898.

43. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R., Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am. J. Respir. Crit. Care Med., 2016, Vol. 193, no. 11, pp. 1281-1291.

44. Romero P., Zippelius A., Kurth I., Pittet M.J., Touvrey C., Iancu E.M., Corthesy P., Devevre E., Speiser D.E., Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol., 2007, Vol. 178, no. 7, pp. 4112-4119.

45. Rubinstein A., Kudryavtsev I., Arsentieva N., Korobova Z.R., Isakov D., Totolian A.A. CXCR3-Expressing T Cells in Infections and Autoimmunity. Front. Biosci., 2024, Vol. 29, no. 8, 301. doi:10.31083/j.fbl2908301.

46. Rufer N., Zippelius A., Batard P., Pittet M.J., Kurth I., Corthesy P., Cerottini J.C., Leyvraz S., Roosnek E., Nabholz M., Romero P. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood, 2003, Vol. 102, no. 5, pp. 1779-1787.

47. Sakthivel P., Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, Vol. 24, no. 1, pp. 59-65.

48. Shamaei M., Mortaz E., Pourabdollah M., Garssen J., Tabarsi P., Velayati A., Adcock I.M. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: A new aspect of macrophage heterogeneity. Hum Immunol., 2018, Vol. 79, no. 1, pp. 63-69.

49. She Y.X., Yu Q.Y., Tang X.X. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov., 2021, Vol. 7, no. 1, 52. doi: 10.1038/s41420-021-00437-9.

50. Starshinova A., Borozinets A., Kulpina A., Sereda V., Rubinstein A., Kudryavtsev I., Kudlay D. Bronchial Asthma and COVID-19: etiology, pathological triggers, and therapeutic considerations. Pathophysiology, 2024, Vol. 31, no. 2, pp. 269-287.

51. Starshinova A.A., Malkova A.M., Basantsova N.Y., Zinchenko Y.S., Kudryavtsev I.V., Ershov G.A., Soprun L.A., Mayevskaya V.A., Churilov L.P., Yablonskiy P.K. Sarcoidosis as an Autoimmune Disease. Front. Immunol., 2020, Vol. 10, 2933. doi: 10.3389/fimmu.2019.02933.

52. Ten Berge B., Paats M.S., Bergen I.M., van den Blink B., Hoogsteden H.C., Lambrecht B.N., Hendriks R.W., Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology, 2012, Vol. 51, no. 1, pp. 37-46.

53. Terao I., Hashimoto S., Horie T. Effect of GM-CSF on TNF-alpha and IL-1-beta production by alveolar macrophages and peripheral blood monocytes from patients with sarcoidosis. Int. Arch. Allergy Immunol., 1993, Vol. 102, no. 3, pp. 242-248.

54. Tøndell A., Moen T., Børset M., Salvesen Ø., Rø A.D., Sue-Chu M. Bronchoalveolar lavage fluid IFN-γ+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm., 2014, Vol. 2014, 438070. doi: 10.1155/2014/438070.

55. Valeyre D., Bernaudin J.F., Brauner M., Nunes H., Jeny F. Infectious Complications of Pulmonary Sarcoidosis. J. Clin. Med., 2024, Vol. 13, no. 2, 342. doi: 10.3390/jcm13020342.

56. van der Ploeg E.K., Krabbendam L., Vroman H., van Nimwegen M., de Bruijn M.J.W., de Boer G.M., Bergen I.M., Kool M., Tramper-Standers G.A., Braunstahl G.J., Huylebroeck D., Hendriks R.W., Stadhouders R. Type-2 CD8+ T-cell formation relies on interleukin-33 and is linked to asthma exacerbations. Nat. Commun., 2023, Vol. 14, 5137. doi: 10.1038/s41467-023-40820-x.

57. Welsh K.J., Risin S.A., Actor J.K., Hunter R.L. Immunopathology of postprimary tuberculosis: increased T-regulatory cells and DEC-205-positive foamy macrophages in cavitary lesions. Clin. Dev. Immunol., 2011, Vol. 2011, 307631. doi: 10.1155/2011/307631.

58. Zhang H., Costabel U., Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front. Immunol., 2021, Vol. 12, 788502. doi: 10.3389/fimmu.2021.788502.


Supplementary files

Review

For citations:


Rubinstein A.A., Kudryavtsev I.V., Lazareva N.M., Akisheva T.V., Baranova O.P., Ses’ T.P., Ilkovich M.M., Totolian A.A. Alterations in peripheral blood CD8+T cell subsets in patients with lung sarcoidosis. Medical Immunology (Russia). 2025;27(6):1323-1338. (In Russ.) https://doi.org/10.15789/1563-0625-AIP-3222

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)