РОЛЬ МЕХАНИЧЕСКИХ СВОЙСТВ T-КЛЕТОК В ФОРМИРОВАНИИ ИММУННОГО ОТВЕТА
https://doi.org/10.15789/1563-0625-TRO-3215
Аннотация
Резюме
Современные исследования в области иммунологии указывают на немаловажное значение механических факторов в формировании иммунного ответа. Механоиммунология, как новое междисциплинарное направление, изучает влияние механических стимулов на поведение иммунных клеток, в частности T-лимфоцитов. Доказано, что жесткость микросреды, механические взаимодействия с внеклеточным матриксом, а также изменение мембранного натяжения способны модулировать активацию, миграцию, пролиферацию и эффекторные функции T-клеток. Оптимальная механическая среда способствует повышению T-клеточной активности, в то время как увеличение жесткости микросреды, изменение свойств внеклеточного матрикса, могут снижать их функциональные возможности. Известные молекулы такие, как Piezo 1, интегрины, Yes-ассоциированный белок, являются ключевыми регуляторами механотрансдукции в иммунных клетках. Постепенное развитие представлений об их участии в иммунном ответе свидетельствует о значительной сопряженности их модулирующих влияний, формирующих систему, обеспечивающую комплексное реагирование на механические стимулы. Механомодуляция приводит к изменению внутриклеточной среды, выступая в качестве фактора, определяющего метаболический профиль T-клеток. Кроме того, исследования показывают, что механочувствительные сигнальные пути могут участвовать в регуляции межклеточных взаимодействий и адаптивного иммунного ответа, что предоставляет широкие возможности для модификации иммунных реакций. Понимание механизмов механотрансдукции открывает перспективы для разработки новых терапевтических стратегий. Механические сигналы могут быть использованы для повышения эффективности CAR-T-клеток за счет оптимизации их активации, пролиферации и инфильтрации в опухолевую ткань, что особенно важно в лечении злокачественных новообразований, в частности солидных опухолей, где CAR-T-клеточная терапия сталкивается с серьезными ограничениями. Механоиммунологические подходы рассматриваются также в контексте лечения аутоиммунных заболеваний. Предполагается, что механочувствительные пути могут регулировать избыточную активацию T-клеток, препятствуя развитию аутоиммунных процессов и патологической гиперактивации иммунной системы. Не исключено создание эффективных методик предотвращения реакций трансплантат-против-хозяина и отторжения трансплантата, а также методов лечения хронических инфекций. Спектр возможных фармакологических методик включает в себя применение активаторов и ингибиторов Piezo 1, интегринов и Yes-ассоциированного белка. Разрабатываются и биоинженерные подходы. Одним из перспективных направлений является использование наномоторов для ex vivo активации T-клеток, что может повысить эффективность клеточных иммунных технологий в лечении различных заболеваний. Кроме того, настройка иммунных реакций с использованием механических свойств может позволить направленно регулировать иммунный ответ в зависимости от специфики патологического процесса.
Об авторах
Григорий Сергеевич ГоршковРоссия
студент, кафедра медицинской и биологической физики ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Анатолий Сергеевич Быков
Россия
д.м.н., профессор, профессор кафедры микробиологии, вирусологии и иммунологии имени академика А.А. Воробьева ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Оксана Анатольевна Свитич
Россия
д.м.н., профессор, член-корреспондент РАН, директор ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова», заведующая лабораторией молекулярной иммунологии ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова, профессор кафедры микробиологии, вирусологии и иммунологии имени академика А.А. Воробьева ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Список литературы
1. Acuto O. T-cell virtuosity in ‘‘knowing thyself”. Front. Immunol., 2024, Vol. 15, 1343575. DOI: 10.3389/fimmu.2024.1343575
2. Alatoom A., ElGindi M., Sapudom J., Teo J. C. M. The T Cell Journey: A Tour de Force. Advanced Biology, 2023, Vol. 7, no. 1, 2200173. DOI: 10.1002/adbi.202200173
3. Angeli V., Lim H. Y. Biomechanical control of lymphatic vessel physiology and functions. Cell. Mol. Immunol., 2023, Vol. 20, no. 9, pp. 1051-1062. DOI: 10.1038/s41423-023-01042-9
4. Bai J., Yan M., Xu Y., Wang Y., Yao Y., Jin P., Zhang Y., Qu Y., Niu L., Li H. YAP enhances mitochondrial OXPHOS in tumor-infiltrating Treg through upregulating Lars2 on stiff matrix. J. Immunother. Cancer, 2024, Vol. 12, no. 11, e010463. DOI: 10.1136/jitc-2024-010463
5. Bergert M., Erzberger A., Desai R. A., Aspalter I. M., Oates A. C., Charras G., Salbreux G., Paluch E. K. Force transmission during adhesion-independent migration. Nat. Cell. Biol., 2015, Vol. 17, no. 4, pp. 524-529. DOI: 10.1038/ncb3134
6. Bertoni A., Alabiso O., Galetto A., Baldanzi G. Integrins in T Cell Physiology. IJMS, 2018, Vol. 19, no. 2, p. 485. DOI: 10.3390/ijms19020485
7. Boesen E. I., Kakalij R. M. Autoimmune-mediated renal disease and hypertension. Clinical Science, 2021, Vol. 135, no. 17, pp. 2165-2196. DOI: 10.1042/CS20200955
8. Brosinsky P., Leister H., Cheng N., Varelas X., Visekruna A., Luu M. Verteporfin protects against Th17 cell‐mediated EAE independently of YAP inhibition. Eur. J. Immunol., 2022, Vol. 52, no. 9, pp. 1523-1526. DOI: 10.1002/eji.202149564
9. Cai X., Wang K. C., Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front. Cell Dev. Biol., 2021, Vol. 9, 673599. DOI: 10.3389/fcell.2021.673599
10. Calvo V., Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front. Cell Dev. Biol., 2021, Vol. 9, 629097. DOI: 10.3389/fcell.2021.629097
11. Cheever A., Townsend M., O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors Cells, 2022, Vol. 11, no, 22, 3626. DOI: 10.3390/cells11223626
12. Chen D.S. Immunity as biophysics at the surface of a T cell. Immunity, 2024, Vol. 57, no. 2, pp.193-195. DOI: 10.1016/j.immuni.2024.01.015
13. Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., Dubin, A. E., Patapoutian A. Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels. Science, 2010, Vol. 330, no. 6000, pp. 55-60. DOI: 10.1126/science.1193270
14. de Jesus M., Settle A. H., Vorselen D., Gaetjens T. K., Galiano M., Wong Y. Y., Fu T. M., Santosa E., Winer B. Y., Tamzalit F., Wang M. S., Bao Z., Sun J. C., Shah P., Theriot J. A., Abel S. M., Huse M. Topographical analysis of immune cell interactions reveals a biomechanical signature for immune cytolysis, Biorxiv, 2023. DOI: 10.1101/2023.04.16.537078
15. De Marco R. C., Monzo H. J., Ojala P. M. CAR T Cell Therapy: A Versatile Living Drug. IJMS, 2023, Vol. 24, no. 7, 6300. DOI: 10.3390/ijms24076300
16. Douanne T, Griffiths G. M. Cytoskeletal control of the secretory immune synapse. Current Opinion in Cell Biology, 2021, Vol. 71, pp. 87-94. DOI: 10.1016/j.ceb.2021.02.008
17. Du, H., Bartleson, J. M., Butenko, S., Alonso, V., Liu, W. F., Winer, D. A., Butte, M. J. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol., 2023, Vol. 23, no. 3, pp. 174-188. DOI: 10.1038/s41577-022-00761-w
18. Fang, X. Z., Zhou, T., Xu, J. Q., Wang, Y. X., Sun, M. M., He, Y. J., Pan, S. W., Xiong, W., Peng, Z. K., Gao, X. H., & Shang, Y. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci., 2021, Vol. 11, no. 1, p. 13. DOI: 10.1186/s13578-020-00522-z
19. Fu D., Xie D., Wang F., Chen B., Wang Z., Peng F. Mechanically Optimize T Cells Activation by Spiky Nanomotors. Front. Bioeng. Biotechnol., 2022, Vol. 10, 844091. DOI: 10.3389/fbioe.2022.844091
20. Ge H., Tian M., Pei Q., Tan F., Pei H. Extracellular Matrix Stiffness: New Areas Affecting Cell Metabolism. Front. Oncol., 2021, Vol. 11, 631991. DOI: 10.3389/fonc.2021.631991
21. Geng L., Zhang C., He C., Zhang K., Kan H., Mao, A., Ma X. Physiological levels of fluid shear stress modulate vascular function through TRPV4 sparklets. ABBS, 2022, Vol. 54, no. 9, pp. 1268-1277. DOI: 10.3724/abbs.2022118
22. Geng X., Ho Y. C., Srinivasan R.S. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol. Life Sci., 2021, Vol. 78, no. 16, pp. 5903-5923. DOI: 10.1007/s00018-021-03886-8
23. Govendir M. A., Kempe D., Sianati S., Cremasco J., Mazalo J. K., Colakoglu F., Golo M., Poole K., Biro M. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Developmental. Cell., 2022, Vol. 57, no. 18, pp. 2237-2247. DOI: 10.1016/j.devcel.2022.08.012
24. Graham K., Lienau P., Bader B., Prechtl S., Naujoks J., Lesche R., Weiske J., Kuehnlenz J., Brzezinka K., Potze L., Zanconato F., Nicke B., Montebaur A., Bone W., Golfier S., Kaulfuss S., Kopitz C., Pilari S., Steuber H., Hayat S., Kamburov A., Steffen A., Schlicker A., Buchgraber P., Braeuer N., Font N. A., Heinrich T., Kuhnke L., Nowak-Reppel K., Stresemann C., Steigemann P., Walter A. O., Blotta S., Ocker M., Lakner A., von Nussbaum F., Mumberg D., Eis K., Piccolo S., Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chemical Biology, 2024, Vol. 31, no. 7, pp. 1247-1263. DOI: 10.1016/j.chembiol.2024.02.013
25. Gunzer M., Schäfer A., Borgmann S., Grabbe S., Zänker K. S., Bröcker E. B., Kämpgen E., Friedl P. Antigen Presentation in Extracellular Matrix: Interactions of T Cells with Dendritic Cells Are Dynamic, Short Lived, and Sequential. Immunity, 2000, Vol. 13, no. 3, pp. 323-332. DOI: 10.1016/S1074-7613(00)00032-7
26. Guo T., He C., Venado A., Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr. Physiol., 2022, Vol. 12, no. 3, pp. 3523-3558. DOI: 10.1002/cphy.c210032
27. Guo T., Wantono C., Tan Y., Deng F., Duan T., Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front. Physiol., 2023, Vol. 14, 1098129. DOI: 10.3389/fphys.2023.1098129
28. Eiring P., Vashist N., Wedekink F., Genssler S., Fischer B., Dahlhoff J., Mokhtari F., Kuzkina A., Welters M. J. P., Benz T. M., Sorger L., Thiemann V., Almanzar G., Selle M., Thein K., Späth J., Gonzalez M. C., Reitinger C., Ipsen-Escobedo A., Wistuba-Hamprecht K., Eichler K., Filipski K., Zeiner P. S., Beschorner R., Goedemans R., Gogolla F. H., Hackl H., Rooswinkel R. W., Thiem A., Roche P. R., Joshi H., Pühringer D., Wöckel A., Diessner J. E., Rüdiger M., Leo E., Cheng P. F., Levesque M. P., Goebeler M., Sauer M., Nimmerjahn F., Schuberth-Wagner C., von Felten S., Mittelbronn M., Mehling M., Beilhack A., van der Burg S. H., Riedel A., Weide B., Dummer R., Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat. Commun., 2023, Vol. 14, no. 1, p. 4253. DOI: 10.1038/s41467-023-39817-3
29. Hagenbeek T. J., Zbieg J. R., Hafner M., Mroue R., Lacap J. A., Sodir N. M., Noland C. L., Afghani S., Kishore A., Bhat K. P., Yao X., Schmidt S., Clausen S., Steffek M., Lee W., Beroza P., Martin S., Lin E., Fong R., Di Lello P., Kubala M. H., Yang M. N., Lau J. T., Chan E., Arrazate A., An L., Levy E., Lorenzo M. N., Lee H. J., Pham T. H., Modrusan Z., Zang R., Chen Y. C., Kabza M., Ahmed M., Li J., Chang M. T., Maddalo D., Evangelista M., Ye X., Crawford J. J., Dey A. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. Nat. Cancer, 2023, Vol. 4, no. 6, pp. 812-828. DOI: 10.1038/s43018-023-00577-0
30. Hasegawa K., Fujii S., Matsumoto S., Tajiri Y., Kikuchi A., Kiyoshima T. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. The Journal of Pathology, 2021, Vol. 253, no. 1, pp. 80-93. DOI: 10.1002/path.5553
31. Hope J. M., Dombroski J. A., Pereles R. S., Lopez-Cavestany M., Greenlee J. D., Schwager S. C., Reinhart-King C. A., King M. R. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol., 2022, Vol. 20, no. 1, p. 61. DOI: 10.1186/s12915-022-01266-7
32. Humphries J. D., Chastney M. R., Askari J. A., Humphries M. J. Signal transduction via integrin adhesion complexes. Current Opinion in Cell Biology, 2019, Vol. 56, pp. 14-21. DOI: 10.1016/j.ceb.2018.08.004
33. Huttenlocher A., Horwitz A. R. Integrins in Cell Migration. Cold Spring Harbor Perspectives in Biology, 2011, Vol. 3, no. 9, a005074-a005074. DOI: 10.1101/cshperspect.a005074
34. Hyun J., Kim S. J., Cho S. D., Kim H. W. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials, 2023, Vol. 297, 122101. DOI: 10.1016/j.biomaterials.2023.122101
35. Jiang W., Wijerathne T. D., Zhang H., Lin Y. C., Jo S., Im W., Lacroix J. J., Luo Y. L. Structural and thermodynamic framework for PIEZO1 modulation by small molecules. Proc. Natl. Acad. Sci USA, 2023, Vol. 120, no. 50, e2310933120. DOI: 10.1073/pnas.2310933120
36. Jiang Y., Yang X., Jiang J., Xiao B. Structural Designs and Mechanogating Mechanisms of the Mechanosensitive Piezo Channels. Trends in Biochemical Sciences, 2021, Vol. 46, no. 6, pp. 472-488. DOI: 10.1016/j.tibs.2021.01.008
37. Jin W., Tamzalit F., Chaudhuri P. K., Black C. T., Huse M., Kam L. C. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl. Acad. Sci. USA, 2019, Vol. 116, no. 40, pp. 19835-19840. DOI: 10.1073/pnas.1906986116
38. Jung P., Zhou X., Iden S., Bischoff M., Qu B. T cell stiffness is enhanced upon formation of immunological synapse. Elife, 2021, no. 10, e66643. DOI: 10.7554/eLife.66643
39. Kastan N., Gnedeva K., Alisch T., Petelski A. A., Huggins D. J., Chiaravalli J., Aharanov A., Shakked A., Tzahor E., Nagiel A., Segil N., Hudspeth A. J. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat. Commun., 2021, Vol. 12, no. 1, p. 3100. DOI: 10.1038/s41467-021-23395-3
40. Kastan N. R., Oak S., Liang R., Baxt L., Myers R. W., Ginn J., Liverton N., Huggins D. J., Pichardo J., Paul M., Carroll T. S., Nagiel A., Gnedeva K., Hudspeth A. J. Development of an improved inhibitor of Lats kinases to promote regeneration of mammalian organs. Proc. Natl. Acad. Sci. USA, 2022, Vol. 119, no. 28, e2206113119. DOI: 10.1073/pnas.2206113119
41. Kim T. J. Mechanobiology: A New Frontier in Biology. Biology, 2021, Vol. 10, no. 7, p. 570. DOI: 10.3390/biology10070570
42. Kinsella J. A., Debant M., Parsonage G., Morley L. C., Bajarwan M., Revill C., Foster R., Beech D. J. Pharmacology of PIEZO1 channels. British J Pharmacology., 2024m Vol. 181, no. 23, pp. 4714-4732. DOI: 10.1111/bph.17351
43. Kolasangiani R., Bidone T. C., Schwartz M. A. Integrin Conformational Dynamics and Mechanotransduction. Cells, 2022, Vol. 11, no. 22, 3584. DOI: 10.3390/cells11223584
44. Koo J. H., Guan K. L. Interplay between YAP/TAZ and Metabolism. Cell Metabolism, 2018, Vol. 28, no. 2, pp. 196-206. DOI: 10.1016/j.cmet.2018.07.010
45. Lämmermann T., Bader B. L., Monkley S. J., Worbs T., Wedlich-Söldner R., Hirsch K., Keller M., Förster R., Critchley D. R., Fässler R., Sixt M. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature, 2008, Vol. 453, no. 7191, pp. 51-55. DOI: 10.1038/nature06887
46. Lebid A., Chung L., Pardoll D. M., Pan F. YAP Attenuates CD8 T Cell-Mediated Anti-tumor Response. Front. Immunol., 2020, Vol. 11, p. 580. DOI: 10.3389/fimmu.2020.00580
47. Lei K., Kurum A., Kaynak M., Bonati L., Han Y., Cencen V., Gao M., Xie Y. Q., Guo Y., Hannebelle M. T. M., Wu Y., Zhou G., Guo M., Fantner G. E., Sakar M. S., Tang L., Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng., 2021. Vol. 5, no. 12, pp. 1411-1425. DOI: 10.1038/s41551-021-00826-6
48. Liu B., Kolawole E. M., Evavold B. D. Mechanobiology of T Cell Activation: To Catch a Bond. Annu Rev. Cell Dev. Biol., 2021, Vol. 37, no. 1, pp. 65-87. DOI: 10.1146/annurev-cellbio-120219-055100
49. Liu C. S. C., Mandal T., Biswas P., Hoque M. A., Bandopadhyay P., Sinha B. P., Sarif J., D'Rozario R., Sinha D. K., Sinha B., Ganguly D. Piezo1 mechanosensing regulates integrin-dependent chemotactic migration in human T cells. eLife, 2024, Vol. 12, RP91903. DOI: 10.7554/eLife.91903
50. Liu S., Pan X., Cheng W., Deng B., He Y., Zhang L., Ning Y., Li J. Tubeimoside I Antagonizes Yoda1-Evoked Piezo1 Channel Activation. Front. Pharmacol., 2020, Vol. 11, p. 768. DOI: 10.3389/fphar.2020.00768
51. Luthold C., Hallal T., Labbé D. P., Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers, 2022, Vol. 14, no, 12, 2887. DOI: 10.3390/cancers14122887
52. Lv D., Fei Y., Chen H., Wang J., Han W., Cui B., Feng Y., Zhang P., Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front. Immunol., 2024, Vol. 15, 1340702. DOI: 10.3389/fimmu.2024.1340702
53. Mancuso R. V., Schneider G., Hürzeler M., Gut M., Zurflüh J., Breitenstein W., Bouitbir J., Reisen F., Atz K., Ehrhardt C., Duthaler U., Gygax D., Schmidt A. G., Krähenbühl S., Weitz-Schmidt G. Allosteric targeting resolves limitations of earlier LFA-1 directed modalities. Biochemical Pharmacology, 2023, Vol. 211, 115504. DOI: 10.1016/j.bcp.2023.115504
54. Martino F., Perestrelo A. R., Vinarský V., Pagliari S., Forte G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol, 2018, Vol. 9, p. 824. DOI: 10.3389/fphys.2018.00824
55. Meng K. P., Majedi F. S., Thauland T. J., Butte M. J. Mechanosensing through YAP controls T cell activation and metabolism. Journal of Experimental Medicine, 2020, Vol. 217, no. 8, e20200053. DOI: 10.1084/jem.20200053
56. Mierke C.T. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells, 2024, Vol. 13, no. 1, p. 96. DOI: 10.3390/cells13010096
57. Montironi C., Muñoz-Pinedo C., Eldering E. Hematopoietic versus Solid Cancers and T Cell Dysfunction: Looking for Similarities and Distinctions. Cancers, 2021, Vol. 13, no. 2, p. 284. DOI: 10.3390/cancers13020284
58. Murugesan S., Hong J., Yi J., Li D., Beach J. R., Shao L., Meinhardt J., Madison G., Wu X., Betzig E., Hammer J. A. Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. Journal of Cell Biology, 2016, Vol. 215, no. 3, pp. 383-399. DOI: 10.1083/jcb.201603080
59. Narciso M., Martínez Á., Júnior C., Díaz-Valdivia N., Ulldemolins A., Berardi M., Neal K., Navajas D., Farré R., Alcaraz J., Almendros I., Gavara N. Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin. Cancers, 2023, Vol. 15, no. 8, 2404. DOI: 10.3390/cancers15082404
60. Nelson C. M., Xiao B., Wickström S. A., Dufrêne Y. F., Cosgrove D. J., Heisenberg C. P., Dupont S., Shyer A. E., Rodrigues A. R., Trepat X., Diz-Muñoz A. Mechanobiology: Shaping the future of cellular form and function. Cell, 2024, Vol. 187, no. 11, pp. 2652-2656. DOI: 10.1016/j.cell.2024.04.006
61. Ni X., Tao J., Barbi J., Chen Q., Park B. V., Li Z., Zhang N., Lebid A., Ramaswamy A., Wei P., Zheng Y., Zhang X., Wu X., Vignali P., Yang C. P., Li H., Pardoll D., Lu L., Pan D., Pan F. YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 2018, Vol. 8, no. 8, pp. 1026-1043. DOI: 10.1158/2159-8290.CD-17-1124
62. Nicolas N., De Tilly A., Roux E. Blood shear stress during the cardiac cycle and endothelial cell orientation and polarity in the carotid artery of male and female mice. Front. Physiol., 2024, Vol. 15, 1386151. DOI: 10.3389/fphys.2024.1386151
63. Pang R., Sun W., Yang Y., Wen D., Lin F., Wang D., Li K., Zhang N., Liang J., Xiong C., Liu Y. PIEZO1 mechanically regulates the antitumour cytotoxicity of T lymphocytes. Nat. Biomed. Eng., 2024, Vol. 8, no. 9, pp. 1162-1176. DOI: 10.1038/s41551-024-01188-5
64. Pang X., He X., Qiu Z., Zhang H., Xie R., Liu Z., Gu Y., Zhao N., Xiang Q., Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Sig. Transduct. Target Ther., 2023, Vol. 8, no. 1, p. 1. DOI: 10.1038/s41392-022-01259-6
65. Pathni A., Özçelikkale A., Rey-Suarez I., Li L., Davis S., Rogers N., Xiao Z., Upadhyaya A. Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation. Front. Immunol., 2022, Vol. 13, 779888. DOI: 10.3389/fimmu.2022.779888
66. Pathni A., Wagh K., Rey-Suarez I., Upadhyaya A. Mechanical regulation of lymphocyte activation and function. Journal of Cell Science, 2024, Vol. 137, no. 13, jcs219030. DOI: 10.1242/jcs.219030
67. Pocaterra A., Romani P., Dupont S. YAP/TAZ functions and their regulation at a glance. Journal of Cell Science, 2020, Vol. 133, no. 2, jcs230425. DOI: 10.1242/jcs.230425
68. Pribila J. T., Quale A. C., Mueller K. L., Shimizu Y. Integrins and T Cell–Mediated Immunity. Annu Rev. Immunol. 2004, Vol. 22, no. 1, pp. 157-180. DOI: 10.1146/annurev.immunol.22.012703.104649
69. Reversat A., Gaertner F., Merrin J., Stopp J., Tasciyan S., Aguilera J., de Vries I., Hauschild R., Hons M., Piel M., Callan-Jones A., Voituriez R., Sixt M. Cellular locomotion using environmental topography. Nature, 2020, Vol. 582, no. 7813, pp. 582-585. DOI: 10.1038/s41586-020-2283-z
70. Rogers J., Bajur A. T., Salaita K., Spillane K. M. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophysical Journal, 2024, Vol. 123, no. 15, pp. 2234-2255. DOI: 10.1016/j.bpj.2024.05.020
71. Rømer A. M. A., Thorseth M. L., Madsen D. H. Immune Modulatory Properties of Collagen in Cancer. Front. Immunol., 2021, Vol. 12, 791453. DOI: 10.3389/fimmu.2021.791453
72. Roy N. H., Kim S. H. J., Buffone A. Jr., Blumenthal D., Huang B., Agarwal S., Schwartzberg P. L., Hammer D. A., Burkhardt J. K. LFA-1 signals to promote actin polymerization and upstream migration in T cells. J. Cell Sci., 2020, Vol. 133, no. 17, jcs248328. DOI: 10.1242/jcs.248328
73. Sapudom J., Alatoom A., Tipay P. S., Teo J. Cm. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials, 2025, Vol. 315, 122900. DOI: 10.1016/j.biomaterials.2024.122900
74. Sarna N. S., Desai S. H., Kaufman B. G., Curry N. M., Hanna A. M., King M. R. Enhanced and sustained T cell activation in response to fluid shear stress. iScience, 2024, Vol. 27, no. 6, 109999. DOI: 10.1016/j.isci.2024.109999
75. Schoppmeyer R., van Steen A. C. I., Kempers L., Timmerman A. L., Nolte M. A., Hombrink P., van Buul J.D. The endothelial diapedesis synapse regulates transcellular migration of human T lymphocytes in a CX3CL1- and SNAP23-dependent manner. Cell Reports, 2022, Vol. 38, no. 3, 110243. DOI: 10.1016/j.celrep.2021.110243
76. Secondino S., Canino C., Alaimo D., Muzzana M., Galli G., Borgetto S., Basso S., Bagnarino J., Pulvirenti C., Comoli P., Pedrazzoli P. Clinical Trials of Cellular Therapies in Solid Tumors. Cancers, 2023, Vol. 15, no. 14, 3667. DOI: 10.3390/cancers15143667
77. Seo J., Kim J. Regulation of Hippo signaling by actin remodeling. BMB Rep., 2018, Vol. 51, no. 3, pp. 151-156. DOI: 10.5483/BMBRep.2018.51.3.012
78. Shalhout S. Z., Yang P. Y., Grzelak E. M., Nutsch K., Shao S., Zambaldo C., Iaconelli J., Ibrahim L., Stanton C., Chadwick S. R., Chen E., DeRan M., Li S., Hull M., Wu X., Chatterjee A. K., Shen W., Camargo F. D., Schultz P. G., Bollong M. J. YAP-dependent proliferation by a small molecule targeting annexin A2. Nat. Chem. Biol., 2021, Vol. 17, no. 7, pp. 767-775. DOI: 10.1038/s41589-021-00755-0
79. Smith A., Stanley P., Jones K., Svensson L., McDowall A., Hogg N. The role of the integrin LFA‐1 in T‐lymphocyte migration. Immunological Reviews, 2007, Vol. 218, no. 1, pp. 135-146. DOI: 10.1111/j.1600-065X.2007.00537.x
80. Sturbaut M., Bailly F., Coevoet M., Sileo P., Pugniere M., Liberelle M., Magnez R., Thuru X., Chartier-Harlin M. C., Melnyk P., Gelin M., Allemand F., Guichou J. F., Cotelle P. Discovery of a cryptic site at the interface 2 of TEAD – Towards a new family of YAP/TAZ-TEAD inhibitors. European Journal of Medicinal Chemistry, 2021, Vol. 226, 113835. DOI: 10.1016/j.ejmech.2021.113835
81. Sun D., Shi X., Li S., Wang X., Yang X., Wan M. CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Mol. Med. Rep., 2024, Vol. 29, no. 3, p. 47. DOI: 10.3892/mmr.2024.13171
82. Sundqvist K. G. T Cell Motility ─ How Is It Regulated? Front. Immunol., 2020, Vol. 11, 588642. DOI: 10.3389/fimmu.2020.588642
83. Tamzalit F., Wang M. S., Jin W., Tello-Lafoz M., Boyko V., Heddleston J. M., Black C. T., Kam L. C., Huse M. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci Immunol., 2019, Vol. 4, no. 33, eaav5445. DOI: 10.1126/sciimmunol.aav5445
84. Tang H., Zeng R., He E., Zhang I., Ding C., Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators: Miniperspective. J. Med. Chem., 2022, Vol. 65, no. 9, pp. 6441-6453. DOI: 10.1021/acs.jmedchem.2c00085
85. Taylor E. B., Wolf V. L., Dent E., Ryan M. J. Mechanisms of hypertension in autoimmune rheumatic diseases. British J. Pharmacology, 2019, Vol. 176, no. 12, pp. 1897-1913. DOI: 10.1111/bph.14604
86. Thien N. D., Hai-Nam N., Anh D. T., Baecker D. Piezo1 and its inhibitors: Overview and perspectives. European Journal of Medicinal Chemistry, 2024, Vol. 273, 116502. DOI: 10.1016/j.ejmech.2024.116502
87. Walling B. L., Kim M. LFA-1 in T Cell Migration and Differentiation. Front. Immunol., 2018, Vol. 9, p. 952. DOI: 10.3389/fimmu.2018.00952
88. Wang H. J., Wang Y., Mirjavadi S. S., Andersen T., Moldovan L., Vatankhah P., Russell B., Jin J., Zhou Z., Li Q., Cox C. D., Su Q. P., Ju L. A. Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution. Nat. Commun., 2024, Vol. 15, no. 1, 5521. DOI: 10.1038/s41467-024-49833-6
89. Wang M. S., Hu Y., Sanchez E. E., Xie X., Roy N. H., de Jesus M., Winer B. Y., Zale E. A., Jin W., Sachar C., Lee J. H., Hong Y., Kim M., Kam L. C., Salaita K., Huse M. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat. Commun., 2022, Vol. 13, no. 1, p. 3222. DOI: 10.1038/s41467-022-30809-3
90. Wijerathne T. D., Ozkan A. D., Lacroix J. J. Yoda1’s energetic footprint on Piezo1 channels and its modulation by voltage and temperature. Proc. Natl. Acad. Sci USA, 2022, Vol. 119, no. 29, e2202269119. DOI: 10.1073/pnas.2202269119
91. Winkler J., Abisoye-Ogunniyan A., Metcalf K. J., Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun., 2020, Vol. 11, no. 1, p. 5120. DOI: 10.1038/s41467-020-18794-x
92. Wong D. C. P., Ding J. L. The mechanobiology of NK cells “Forcing NK to Sense” target cells. Biochimica et Biophysica Acta (BBA) Reviews on Cancer, 2023, Vol. 1878, no. 2, 188860. DOI: 10.1016/j.bbcan.2023.188860
93. Woolf E., Grigorova I., Sagiv A., Grabovsky V., Feigelson S. W., Shulman Z., Hartmann T., Sixt M., Cyster J. G., Alon R. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol., 2007, Vol. 8, no. 10, pp. 1076-1085. DOI: 10.1038/ni1499
94. Wu J., Lewis A. H., Grandl J. Touch, Tension, and Transduction – The Function and Regulation of Piezo Ion Channels. Trends in Biochemical Sciences, 2017, Vol. 42, no. 1, pp. 57-71. DOI: 10.1016/j.tibs.2016.09.004
95. Xie D., Fu D., Fu S., Chen B., He W., Wilson D. A., Peng F. Mechanical Activation of Immune T Cells via a Water Driven Nanomotor. Adv. Healthcare Materials, 2022, Vol. 11, no. 12, 2200042. DOI: 10.1002/adhm.202200042
96. Yang C., Xie R., Cao T., Zhang Y., Xe Y., Fan Q., Wang X., Ye F. Mechanical communication and function regulation of immune cells. Fundamental Research, 2024, S2667325824001523. DOI: 10.1016/j.fmre.2024.04.008
97. Yang X., Lin C., Chen X., Li S., Li X., Xiao B. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature, 2022, Vol. 604, no. 7905, pp. 377-383. DOI: 10.1038/s41586-022-04574-8
98. Yong J., Li Y., Lin S., Wang Z., Xu Y. Inhibitors Targeting YAP in Gastric Cancer: Current Status and Future Perspectives. DDDT, 2021, Vol. 15, pp. 2445-2456. DOI: 10.2147/DDDT.S308377
99. Yuan D. J., Shi L., Kam L. C. Biphasic response of T cell activation to substrate stiffness. Biomaterials, 2021, Vol. 273, 120797. DOI: 10.1016/j.biomaterials.2021.120797
100. Zagiel B., Melnyk P., Cotelle P. Progress with YAP/TAZ-TEAD inhibitors: a patent review (2018-present). Expert Opinion on Therapeutic Patents, 2022, Vol. 32, no. 8, pp. 899-912. DOI: 10.1080/13543776.2022.2096436
101. Zhao B., Pobbati A. V., Rubin B. P., Stauffer S. Leveraging Hot Spots of TEAD–Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals, 2023, Vol. 16, no. 4, p. 583. DOI: 10.3390/ph16040583
102. Zhou Z., Martinac B. Mechanisms of PIEZO Channel Inactivation. IJMS, 2023, Vol. 24, no. 18, 14113. DOI: 10.3390/ijms241814113
103. Zhu B., Qian W., Han C., Bai T., Hou X. Piezo 1 activation facilitates cholangiocarcinoma metastasis via Hippo/YAP signaling axis. Molecular Therapy Nucleic Acids, 2021, Vol. 24, pp. 241-252. DOI: 10.1016/j.omtn.2021.02.026
104. Zhuang C., Gould J. E., Enninful A., Shao S., Mak M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. Trends in Pharmacological Sciences, 2023, Vol. 44, no. 6, pp. 366-378. DOI: 10.1016/j.tips.2023.03.007
105. Zimmerman T., Blanco F. Inhibitors Targeting the LFA-1/ICAM-1 Cell-Adhesion Interaction: Design and Mechanism of Action. CPD, 2008, Vol. 14, no. 22, pp. 2128-2139. DOI: 10.2174/138161208785740225
106. Zuidema A., Wang W., Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. BioEssays, 2020, Vol. 42, no. 11, 2000119. DOI: 10.1002/bies.202000119
Дополнительные файлы
![]() |
1. Текст исправленный | |
Тема | ||
Тип | Прочее | |
Скачать
(132KB)
|
Метаданные ▾ |
![]() |
2. 3215 | |
Тема | ||
Тип | Прочее | |
Скачать
(432KB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Горшков Г.С., Быков А.С., Свитич О.А. РОЛЬ МЕХАНИЧЕСКИХ СВОЙСТВ T-КЛЕТОК В ФОРМИРОВАНИИ ИММУННОГО ОТВЕТА. Медицинская иммунология. https://doi.org/10.15789/1563-0625-TRO-3215
For citation:
Gorshkov G., Bykov A., Svitich O. THE ROLE OF MECHANICAL PROPERTIES OF T-CELLS IN SHAPING THE IMMUNE RESPONSE. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-TRO-3215