SINGLE CELL TRANSCRIPTOMICS IN PROSTATE CANCER RESEARCH
https://doi.org/10.15789/1563-0625-CST-3214
Abstract
Abstract
Study Objective. To review current advances in transcriptome technologies focused on single cell analysis with emphasis on their application in the study of the tumor microenvironment and immune landscape in prostate cancer.
Methods. PubMed, Medline, Web of Science, and Embase scientific databases were analyzed.
Results. Prostate cancer (PCa) is an androgen hormone-dependent malignant neoplasm that affects the male genitourinary system. Evidence shows that in men under 40 years of age, PCa is extremely rare, while the highest number of cases occurs in the 50 to 70 age group. Today, PCa is one of the most common cancers among men and represents one of the leading causes of cancer-related deaths. According to the Global Cancer Observatory (GCO), there were 1,467,854 new cases of cancer worldwide in 2022, resulting in 397,430 deaths associated with the disease. PCa ranks fourth in terms of incidence and second in terms of mortality among all cancers in men. In Russia, PCa ranks second in incidence among all cancers in men, with 52,712 cases registered as of 2022, and fourth in mortality, with 14,635 cases. A thorough understanding of the mechanisms of the pathogenesis and progression of PCa is key to effective diagnosis and treatment development. This review presents an analysis of transcriptome-based techniques in single cell resolution in the study of cellular heterogeneity in prostate cancer. The methodology of the analysis is also presented in detail, cellular heterogeneity in prostate cancer is characterized, current research in the field of single cell transcriptomics in prostate cancer is described, and promising directions of application of the results in clinical practice are outlined. The results of research in this area have significant potential for use as both prognostic and diagnostic markers of tumor processes. Thus, the work emphasizes the importance of studying cellular heterogeneity to improve the methods of prostate cancer diagnostics and therapy.
Discussion. Technologies for studying the transcriptome of single cells provide unique opportunities for in-depth understanding of the molecular and cellular mechanisms underlying the immune response in cancer. The data obtained may become the basis for the development of new directions in fundamental immunology, the development of innovative therapeutic strategies and the introduction of a personalized approach to prostate cancer treatment, which opens prospects for improving the effectiveness of therapy.
About the Authors
Elina R. AkramovaRussian Federation
laboratory assistant-researcher at the immunology laboratory of the Institute of Urology and Clinical Oncology of FSBEI HE BSMU MOH Russia, 2nd year Master's student at the Institute for Education Development in the field of Biology of the Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University of the Ministry of Health of the Russian Federation
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Yulia Vakilevna Sharifyanova
Russian Federation
Junior Researcher, Laboratory of Immunology, Institute of Urology and Clinical Oncology FSBEI HE BSMU MOH Russia
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Diana Khalilovna Gainullina
Russian Federation
laboratory assistant-researcher at the immunology laboratory of the Institute of Urology and Clinical Oncology of FSBEI HE BSMU MOH Russia, 5th year student of the pediatric faculty of the Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University of the Ministry of Health of the Russian Federation
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Polina Nikolaevna Shmelkova
Russian Federation
laboratory assistant-researcher at the immunology laboratory of the Institute of Urology and Clinical Oncology of FSBEI HE BSMU MOH Russia, 5th year student of the pediatric faculty of the Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University of the Ministry of Health of the Russian Federation
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Lilia Ilgizovna Kalimullina
Russian Federation
Junior Researcher, Laboratory of Immunology, Institute of Urology and Clinical Oncology FSBEI HE BSMU MOH Russia
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Valentin Nikolaevich Pavlov
Russian Federation
Academician of the Russian Academy of Sciences, Rector of the FSBEI HE BSMU MOH Russia, Doctor of Medical Sciences, Professor
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Kadriya Ildarovna Enikeeva
Russian Federation
Sci. (Farm); Head of the Laboratory of Immunology, Institute of Urology and Clinical Oncology FSBEI HE BSMU MOH Russia
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. https://doi: 10.3322/caac.21590
2. Held-Warmkessel J. Treatment of advanced prostate cancer. Semin Oncol Nurs. 2001;17(2):118-28. https://doi: 10.1053/sonu.2001.23078
3. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1-14. https://doi: 10.1038/s12276-018-0071-8.
4. Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front Genet. 2019;10:317. https://doi: 10.3389/fgene.2019.00317
5. Slovin S, Carissimo A, Panariello F, Grimaldi A, Bouché V, Gambardella G, Cacchiarelli D. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. Methods Mol Biol. 2021;2284:343-365. https://doi: 10.1007/978-1-0716-1307-8_19
6. Cao Y., Zhu S., Yu B., Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J. 2022; 36(12): e22656, https://doi.org/10.1096/fj.202200943r
7. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022;12(3):e694. https://doi: 10.1002/ctm2.694
8. Liu Y, Liang S, Wang B, Zhao J, Zi X, Yan S, Dou T, Jia J, Wang K, Ge C. Advances in Single-Cell Sequencing Technology and Its Application in Poultry Science. Genes (Basel). 2022;13(12):2211. https://doi: 10.3390/genes13122211
9. Siefert JC, Cioni B, Muraro MJ, Alshalalfa M, Vivié J, van der Poel HG, Schoots IG, Bekers E, Feng FY, Wessels LFA, Zwart W, Bergman AM. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Mol Cancer Res. 2021;19(10):1778-1791. https://doi: 10.1158/1541-7786.MCR-20-0740
10. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096-8. https://doi: 10.1038/nmeth.2639
11. Valihrach L, Androvic P, Kubista M. Platforms for Single-Cell Collection and Analysis. Int J Mol Sci. 2018;19(3):807. https://doi: 10.3390/ijms19030807
12. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049. https://doi: 10.1038/ncomms14049
13. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA. Laser capture microdissection. Science. 1996;274(5289):998-1001. https://doi:10.1126/science.274.5289.998
14. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods. 2017;14(3):267-270. https://doi: 10.1038/nmeth.4145
15. Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16(1):148. https://doi: 10.1186/s13059-015-0706-1
16. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011;9(1):72-4. https://doi: 10.1038/nmeth.1778
17. Donati G. The niche in single-cell technologies. Immunol Cell Biol. 2016;94(3):250-5. https://doi: 10.1038/icb.2015.107
18. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell. 2017;65(4):631-643.e4. https://doi: 10.1016/j.molcel.2017.01.023
19. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746. https://doi: 10.15252/msb.20188746
20. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11(2):163-6. https://doi: 10.1038/nmeth.2772
21. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru K, Mazutis L, Rudensky AY, Pe'er D. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell. 2018;174(5):1293-1308. https://doi: 10.1016/j.cell.2018.05.060
22. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).
23. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189-96. https://doi: 10.1126/science.aad0501
24. Enikeeva K, Rafikova G, Sharifyanova Y, Mulyukova D, Vanzin A, Pavlov V. Epigenetics as a Key Factor in Prostate Cancer. Adv Biol (Weinh). 2024;8(5):e2300520. https://doi: 10.1002/adbi.202300520
25. Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, Lauffenburger DA, Raue A. Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics. Cell Rep. 2018;25(6):1458-1468.e4. https://doi: 10.1016/j.celrep.2018.10.047
26. Trapnell, C. et al. Te dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
27. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polański K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey AM, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne RP, Ivarsson MA, Lisgo S, Filby A, Rowitch DH, Bulmer JN, Wright GJ, Stubbington MJT, Haniffa M, Moffett A, Teichmann SA. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347-353. https://doi: 10.1038/s41586-018-0698-6
28. Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate cancer stem cells: biology and treatment implications. Int J Mol Sci. 2023;24(19):14890. https://doi.org/10.3390/ijms241914890.
29. Li Z, Li Z, Luo Y, Chen W, Fang Y, Xiong Y, Zhang Q, Yuan D, Yan B, Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. Cell Regen. 2024;13(1):23. https://doi: 10.1186/s13619-024-00206-w
30. De Vargas Roditi L, Jacobs A, Rueschoff JH, Bankhead P, Chevrier S, Jackson HW, Hermanns T, Fankhauser CD, Poyet C, Chun F, Rupp NJ, Tschaebunin A, Bodenmiller B, Wild PJ. Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer. Cell Rep Med. 2022;3(4):100604. https://doi: 10.1016/j.xcrm.2022.100604
31. Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B, Nguyen HM, Yang YC, da Costa RMG, Kaipainen A, Coleman R, Higano CS, Yu EY, Cheng HH, Mostaghel EA, Montgomery B, Schweizer MT, Hsieh AC, Lin DW, Corey E, Nelson PS, Morrissey C. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J Clin Invest. 2019;129(10):4492-4505. https://doi: 10.1172/JCI128212
32. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, Kelly K, Lin D, Dicker A, Arnold J, Hecht T, Wicha M, Sears R, Rowley D, White R, Gulley JL, Lee J, Diaz Meco M, Small EJ, Shen M, Knudsen K, Goodrich DW, Lotan T, Zoubeidi A, Sawyers CL, Rudin CM, Loda M, Thompson T, Rubin MA, Tawab-Amiri A, Dahut W, Nelson PS. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin Cancer Res. 2019;25(23):6916-6924. https://doi: 10.1158/1078-0432
33. Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18(2):79-92. https://doi: 10.1038/s41585-020-00400-w
34. Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, Zhang M, Cheng X, Wang J, Fang Y, Zhu HH, Chua CW, Fan L, Zhu Y, Pan J, Wang J, Xue W, Gao WQ. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol. 2020;3(1):778. https://doi: 10.1038/s42003-020-01476-1
35. Zhang B, Wang S, Fu Z, Gao Q, Yang L, Lei Z, Shi Y, Le K, Xiong J, Liu S, Zhang J, Su J, Chen J, Liu M, Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front Genet. 2023;13:1073232. https://doi: 10.3389/fgene.2022.1073232
36. Ou Y, Xia C, Ye C, Liu M, Jiang H, Zhu Y, Yang D. Comprehensive scRNA-seq analysis to identify new markers of M2 macrophages for predicting the prognosis of prostate cancer. Ann Med. 2024;56(1):2398195. https://doi: 10.1080/07853890.2024.2398195
37. Liu W, Wang M, Wang M, Liu M. Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer. Medicine (Baltimore). 2023;102(32):e34611. https://doi: 10.1097/MD.0000000000034611
38. Heidegger I, Fotakis G, Offermann A, Goveia J, Daum S, Salcher S, Noureen A, Timmer-Bosscha H, Schäfer G, Walenkamp A, Perner S, Beatovic A, Moisse M, Plattner C, Krogsdam A, Haybaeck J, Sopper S, Thaler S, Keller MA, Klocker H, Trajanoski Z, Wolf D, Pircher A. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer. 2022;21(1):132. https://doi: 10.1186/s12943-022-01597-7
39. Sun Z, Wang J, Zhang Q, Meng X, Ma Z, Niu J, Guo R, Tran LJ, Zhang J, Liu Y, Ye F, Ma B. Coordinating single-cell and bulk RNA-seq in deciphering the intratumoral immune landscape and prognostic stratification of prostate cancer patients. Environ Toxicol. 2024;39(2):657-668. https://doi: 10.1002/tox.23928
40. Liudahl SM, Betts CB, Sivagnanam S, Morales-Oyarvide V, da Silva A, Yuan C, Hwang S, Grossblatt-Wait A, Leis KR, Larson W, Lavoie MB, Robinson P, Dias Costa A, Väyrynen SA, Clancy TE, Rubinson DA, Link J, Keith D, Horton W, Tempero MA, Vonderheide RH, Jaffee EM, Sheppard B, Goecks J, Sears RC, Park BS, Mori M, Nowak JA, Wolpin BM, Coussens LM. Leukocyte Heterogeneity in Pancreatic Ductal Adenocarcinoma: Phenotypic and Spatial Features Associated with Clinical Outcome. Cancer Discov. 2021;11(8):2014-2031. https://doi: 10.1158/2159-8290.CD-20-0841
41. Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D, Saatcioglu HD, Krishnan I, Maroni G, Meyerovitz CV, Kerwin CM, Choi S, Richards WG, De Rienzo A, Tenen DG, Bueno R, Levantini E, Pittet MJ, Klein AM. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity. 2019;50(5):1317-1334.e10. https://doi: 10.1016/j.immuni.2019.03.009
42. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020;181(2):442–59.
43. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, Ashenberg O, Cerami E, Coffey RJ, Demir E, Ding L, Esplin ED, Ford JM, Goecks J, Ghosh S, Gray JW, Guinney J, Hanlon SE, Hughes SK, Hwang ES, Iacobuzio-Donahue CA, Jané-Valbuena J, Johnson BE, Lau KS, Lively T, Mazzilli SA, Pe'er D, Santagata S, Shalek AK, Schapiro D, Snyder MP, Sorger PK, Spira AE, Srivastava S, Tan K, West RB, Williams EH; Human Tumor Atlas Network. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell. 2020;181(2):236-249. https://doi: 10.1016/j.cell.2020.03.053
Supplementary files
Review
For citations:
Akramova E.R., Sharifyanova Yu.V., Gainullina D.Kh., Shmelkova P.N., Kalimullina L.I., Pavlov V.N., Enikeeva K.I. SINGLE CELL TRANSCRIPTOMICS IN PROSTATE CANCER RESEARCH. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-CST-3214