Effect of iron-molybdenum nanocluster polyoxometalates on the functional activity of macrophages and the state of bone marrow erythroblastic islands
https://doi.org/10.15789/1563-0625-EOI-3190
Abstract
The aim of this study was to determine the mechanisms of action of {Mo72Fe30} on erythropoiesis and hematological parameters in vitro and in vivo. The obtained results showed that neither the nanocluster polyoxometalate {Mo72Fe30} nor its destruction products (DP) – low-molecular-weight iron and molybdenum-containing ions – affected the activity of non-specific esterase in the cytoplasm of central macrophages of bone marrow erythroblastic islands, thus indicating no disruption of endotoxin and xenobiotic detoxification processes carried out by these macrophages. However, administration of the studied substances resulted in a decrease in macrophage phagocytic capacity without altering cellular involvement in phagocytosis. Analysis of erythroblastic island cultures revealed the following patterns: administration of {Mo72Fe30} and its accelerated erythroid cell maturation within the erythroblastic island corona. At 24 hours after their administration, a decreased number of class 3 and involutive erythroblastic islands was observed, due to accelerated maturation and dissociation of erythroblastic islands. This effect was confirmed by an increased number of erythroid cells in the myelogram at 24 hours after these substances administration. A simultaneous increase in the number of reconstructing erythroblastic islands in the groups treated with the polyoxometalate and its DP suggests development of an additional wave of erythropoiesis within the island corona. On day 2 after administration of {Mo72Fe30}, there was an increase in the number of proliferating erythroblastic islands of the class 2 and 3, while the number of class 1 islands remained unchanged. This is attributed to the involvement of new macrophages into erythropoiesis and active erythroid cells proliferation. On day 3, a shift to proliferation of more mature class 2 erythroblastic islands was observed. These data indicate the acceleration of erythrocyte maturation within erythroblastic islands after 3 days of the {Mo72Fe30} administration. A similar trend was observed with the administration of its destruction products. Still, the erythropoiesis-accelerating effect was less pronounced in this series. Analysis of rat bone marrow myelograms revealed an increase in bone marrow cellularity after seven days of administration of the studied substances ({Mo72Fe30} and DP). This increase was attributed, in part, to an increase in the number of erythroid cells and reticulocytes. These data are consistent with peripheral blood parameters in rats. A statistically significant increase in erythrocyte count, hemoglobin levels, and hematocrit values was observed following administration of the studied substances ({Mo72Fe30} and PD). The experimental results suggest a potential stimulatory effect of this compound on erythroid lineage development.
About the Authors
A. A. TitovaRussian Federation
Junior Researcher
M. O. Tonkushina
Russian Federation
PhD (Chemistry), Senior Researcher
A. A. Ostroushko
Russian Federation
PhD, MD (Chemistry), Professor, Chief Researcher, Head, Department of Chemical Materials Science
M. V. Ulitko
Russian Federation
PhD (Biology), Аssociate Professor, Director, Department of Biology and Fundamental Medicine
S. A. Brilliant
Russian Federation
PhD (Biology), Researcher
I. G. Danilova
Russian Federation
PhD, MD (Biology), Associate Professor, Deputy Science Director, Head, Laboratory of Morphology and Biochemistry
References
1. Abrashova T.V., Guschin A.Ya., Kovaleva M.A., Rybakova A.V., Selezneva A.I. Handbook. Physiological, biochemical and biometric indicators of the norm of experimental animals]. St. Petersburg: LEMA, 2013. 116 p.
2. Balabekova M.K., Nurmukhambetov A.N., Udartseva T.P., Nurgalieva T.K. Peripheral blood parameters and cellular composition of bone marrow in rats with experimental inflammation. Vestnik Kazakhskogo natsionalnogo meditsinskogo universiteta = Bulletin of the Kazakh National Medical University, 2010, no. 5-3, pp. 281-286. (In Russ.)
3. Brilliant S.A., Yushkov B.G. The study hemoglobine spectrum of rats bone marrow with post-hemorrhagic anemia. Vestnik uralskoy meditsinskoy akademicheskoy nauki = Bulletin of the Ural Medical Academie Science. 2018, Vol. 15, no. 4, pp. 570-576. (In Russ.)
4. Danilova I.G., Gette I.F., Medvedeva S.Y. Influence of iron-molybdenum nanocluster polyoxometalates on the apoptosis of blood leukocytes and the level of heat-shock proteins in the cells of thymus and spleen in rats. Rossiyskie nanotekhnologii = Nanotechnologies in Russia, 2016, Vol. 11, no. 9-10, pp. 653-662. (In Russ.)
5. Drapkina O.M., Avalueva E.B., Bakulin I.G., Vinogradova M.A., Vinogradov N.G., Gaponov T.V., Gaus O.V., Gilyarevsky S.R., Golshmid M.V., Demikhov V.G., Dudina G.A., Zhiburt E.B., Zhurina O.N., Ivanova E.V., Kotovskaya Y.V., Kohno A.V., Kulikov I.A., Kupryashov A.A., Livzan M.A., Lugovskaya S.A., Lukina E.A., Naumov A.V., Pavlyuchenko E.S., Parovichnikova E.N., Ponomarev R.V., Runikhina N.K., Skarzhinskaya N.S., Tarasova I.S., Tikhomirova E.V., Teplykh B.A., Tkacheva O.N., Troitskaya V.V., Fedorov E.D., Khovasova N.O., Chernov V.M., Chesnikova A.I., Shepel R.N. Management of patients with iron deficiency anemia at the stage of primary health care: a practical Guide]. Moscow: ROPNIZ, Silitsea-Polygraph, 2022. 88 p.
6. Zakharov Yu.M., Melnikov I.Yu., Rassokhin A.G. Erythropoiesis studied by a modified method of isolating bone marrow erythroblastic islands. Gematologiya i transfuziologiya = Hematology and Transfusiology, 1984, Vol. 29, no. 4, pp. 52-54. (In Russ)
7. Zakharov Iu.M., Mel’nikov I.Iu., Rassokhin A.G. Classification of erythroblastic islets of the bone marrow and the study of their cellular composition. Arkhiv anatomii, gistologii i embriologii = Archives of Anatomy, Histology and Embryology, 1990, Vol. 98, no. 5, pp. 38-42. (In Russ.)
8. Zakharov Yu.M. New approaches to the study of erythropoiesis in animals and humans. Izvestiya Chelyabinskogo nauchnogo tsentra UrO RAN = News of the Chelyabinsk Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2001, no. 2, pp. 99-103. (In Russ.)
9. Zakharov Yu.M., Rassokhin A.G. Erythroblastic islet: a monograph. Moscow: Meditsina, 2002. 279 p.
10. Ostroushko A.A., Ulitko M.V, Tonkushina M.O, Zubarev I.V., Medvedeva S.Y., Danilova I.G., Gubaeva O.V., Gagarin I.D., Gette I. F. Influence of Nanocluster Molybdenum Polyoxometalates on the Morphofunctional State of Fibroblasts in Culture. Rossiyskie nanotekhnologii = Nanotechnologies in Russia, 2018, Vol. 13, no. 1-2, pp. 3-11. (In Russ.)
11. Ostroushko A.A., Gette I.F., Brilliant S.A., Danilova I.G. Application of nanocluster iron–molybdene polyoxometalates for correction of experimental posthemorrhagic anemia. Rossiyskie nanotekhnologii = Nanotechnologies in Russia, 2019, Vol. 14, no. 3-4, pp. 159-164. (In Russ.)
12. Ostroushko A.A., Tonkushina M.O., Gagarin I.D., Grzhegorzhevsky K.V., Danilova I.G., Gette I.F. Patent RU 2671077 C1, 29.10.2018.
13. Handbook of clinical laboratory research methods. Ed. Kost E.A. Moscow: Meditsina, 1975. 383 p.
14. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, Vol. 19, no.2, pp. 164-174.
15. Almeida A.F., Miranda M.S., Vinhas A., Gonçalves A.I., Gomes M.E., Rodrigues M.T. Controlling macrophage polarization to modulate inflammatory cues using immune-switch nanoparticles. Int. J. Mol. Sci., 2022, Vol. 23, no. 23, 15125. doi: 10.3390/ijms232315125.
16. Anaemia in women and children. World Health Organization. Available at: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children.
17. Corna G., Campana L., Pignatti E., Castiglioni A., Tagliafico E., Bosurgi L., Campanella A., Brunelli S., Manfredi A.A., Apostoli P., Silvestri L., Camaschella C., Rovere-Querini P. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica, 2010, Vol. 95, no. 11, pp. 1814-1822.
18. Dhingra V.K., Gupta R.K.P., Sadana J.R. Demonstration of acid alpha naphthyl acetate esterase activity in bovine lymphocytes and monocytes or macrophages. Res. Vet. Sci., 1982, Vol. 33, no. 1, pp. 26-30.
19. Gaetano C., Massimo L., Alberto M. Control of iron homeostasis as a key component of macrophage polarization. Haematologica, 2010, Vol. 95, no. 11, pp. 1801-1803.
20. Gammella E., Buratti P., Cairo G., Recalcati S. Macrophages: central regulators of iron balance. Metallomics, 2014, Vol. 8, no. 6, pp. 1336-1345.
21. Grech B.J. Mechanistic insights into the treatment of iron-deficiency anemia and arthritis in humans with dietary molybdenum. Eur. J. Clin. Nutr., 2021, Vol. 75, no. 8, pp. 1170-1175.
22. Hayhoe F.G.J., Quaglino D. Haematological cytochemistry. Edinburgh; N.Y.: Churchill Livingstone, 1980. 336 p.
23. Jackson J. Immunology: Host Responses to Biomaterials. In: Lee S.J., Atala A., Yoo J. (eds.). In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design. Elsevier/Academic Press, 2016, p. 35. https:// linkinghub.elsevier.com/retrieve/pii/S1742-7061(14)00269-4.
24. Laskar A., Eilertsen J., Li W., Yuan X. M. SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem. Biophys. Res. Commun., 2013, Vol. 441, no. 4, pp. 737-742.
25. Lucarelli M., Gatti A.M., Savarino G., Quattroni P., Martinelli L., Monari E., Boraschi D. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur. Cyt. Network, 2004, Vol. 15, no. 4, pp. 339-346.
26. Martinez-Torres V., Torres N., Davis J.A., Corrales-Medina F.F. Anemia and Associated Risk Factors in Pediatric Patients. Pediatric Health Med. Ther., 2023, Vol. 14, pp. 267-280.
27. Mendel R.R. Metabolism of Molybdenum. In: Banci L. (ed.). Metallomics and the Cell. Metal Ions in Life Sciences. Springer, Dordrecht, 2013, Vol. 12, pp. 503-528.
28. Miao X., Leng X., Zhang Q. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. Int. J. Mol. Sci., 2017, Vol. 18, no. 2, 336. doi: 10.3390/ijms18020336.
29. Müller A., Sarkar S., Shah S. Q., Bögge, H., Schmidtmann M., Kögerler P., Hauptfleisch, B., Trautwein A.X., Schünemann V. V. Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angew. Chem. Int. Ed.. 1999, Vol. 38, no. 21, pp. 3238-3241.
30. Rampton D., Folkersen J., Fishbane S., Hedenus M., Howaldt S., Locatelli F., Patni S., Szebeni J., Weiss G. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica, 2014, Vol. 99, no. 11, pp. 1671-1676.
31. Recalcati S., Locati M., Marini A., Santambrogio P., Zaninotto F., De Pizzol M., Zammataro L., Girelli D., Cairo G. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol., 2010, Vol. 40, no. 3, pp. 824-835.
32. Rogler G. Immune Cells: Monocytes and Macrophages. In: Baumgart D. (ed.). Crohn’s Disease and Ulcerative Colitis. Springer, Cham, 2017, pp. 119-122.
33. Shafer A.W., Marlow A.A. Toxic Reaction to Intramuscular Injection of Iron. N. Engl. J. Med., 1959. Vol. 260, no. 4, 180. doi: 10.1056/NEJM195901222600408.
34. Sharma L., Wu W., Dholakiya S.L., Gorasiya S., Wu J., Sitapara R., Patel V., Wang M., Zur M., Reddy S., Siegelaub N., Bamba K., Barile F. A., Mantell L.L. Assessment of Phagocytic Activity of Cultured Macrophages Using Fluorescence Microscopy and Flow Cytometry. In: Vancurova I. (ed.). Cytokine Bioassays. Methods in Molecular Biology, Vol. 1172. Humana Press, New York, NY, 2014, pp. 137-145.
35. Soares M.P., Hamza I. Macrophages and Iron Metabolism. Immunity, 2016, Vol. 44, no. 3, pp. 492-504.
36. Terriere L.C. Induction of Detoxication Enzymes in Insects. Annu. Rev. Entomol., 1984. Vol. 29, pp. 71-88.
37. Wang L., Zhang H., Sun L., Gao W., Xiong Y., Ma A., Liu X., Shen L., Li Q., Yang H. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. J. Nanobiotechnology, 2020. Vol. 18, no. 1, 38. doi: 10.1186/s12951-020-00593-7.
38. Zanganeh S., Hutter G., Spitler R., Lenkov O., Mahmoudi M., Shaw A., Pajarinen J.S., Nejadnik H., Goodman S., Moseley M. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016. Vol. 11, no. 11, pp. 986-994.
39. Zvereva E. Activity and heavy metal resistance of non-specific esterases in leaf beetle Chrysomela lapponica from polluted and unpolluted habitats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, Vol. 135, no. 4, pp. 383-391.
Supplementary files
Review
For citations:
Titova A.A., Tonkushina M.O., Ostroushko A.A., Ulitko M.V., Brilliant S.A., Danilova I.G. Effect of iron-molybdenum nanocluster polyoxometalates on the functional activity of macrophages and the state of bone marrow erythroblastic islands. Medical Immunology (Russia). 2025;27(6):1285-1300. (In Russ.) https://doi.org/10.15789/1563-0625-EOI-3190





































