CXCR1, TLR4, and CXCL8: Key Mediators of Pseudomonas aeruginosa Virulence in Wound and Burn Infections
https://doi.org/10.15789/1563-0625-CTA-3182
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen of considerable clinical import, presents a formidable challenge to susceptible individuals, particularly within the confines of nosocomial settings. Those with compromised immune systems, indwelling medical devices such as catheters, and extensive thermal injuries are especially vulnerable to its insidious and often devastating effects. This investigation sought to elucidate the roles of Toll-like receptor 4 (TLR4), Toll-like receptor 5 (TLR5), the chemokine CXCL8, and its cognate receptor CXCR1 in the context of P. aeruginosa infection. Our findings indicate a significant involvement of TLR4 and CXCL8 in the host response to this pathogen. Notably, CXCR1 expression was observed to be downregulated both in cellular models and in whole blood samples obtained from patients afflicted with bacterial infections, specifically those caused by P. aeruginosa. Utilizing antibodies targeting these cell surface molecules, we further explored their influence on bacterial adhesion and the modulation of infection. The application of anti-CXCR1 antibodies resulted in a demonstrable increase in bacterial infection in both T24 and A549 cell lines. Conversely, the administration of anti-TLR4 antibodies exerted an inhibitory effect on P. aeruginosa infection. Anti-CXCL8 antibodies, however, did not elicit a discernible impact on bacterial infection within the initial three hours of exposure. These observations suggest a dichotomous role for these molecules in the host response to P. aeruginosa: CXCR1 appears to function as a negative regulator, while TLR4 appears to act as a positive regulator in the context of bacterial infection.
About the Authors
Muslim Idan MohsinIraq
PhD, Assistant Professor, Department of Pathological Analyses, Faculty of Science
Hydar Muhsin Khalfa
Iraq
PhD, Department of Biology, University of Kufa, Faculty of Science
Samer A. M. H. Al-Hilali
Iraq
Department of Pathological Analyses, Faculty of Science
Israa Mahmood Kadhim Al-Zubaidy
Iraq
MSC, Department of Pathological Analyses, Faculty of Science
Mahmood Shaker Jabbar
Iraq
MSC
Karrar S. Zayed
Iraq
PhD, Department of Pathological Analyses, Faculty of Science
Mohammed Jasim Al-Shamarti
Iraq
PhD, Department of Pathological Analyses, Faculty of Science
References
1. AlGabri M.I.M. Giant cell formation by macrophages and lung epithelial cells: A unique method of cell-cell infection used by B. thailandensis involves tetraspanins: University of Sheffield, 2019. Available at: https://etheses.whiterose.ac.uk/id/eprint/25107/.
2. Alrahimi J. The Role of Tetraspanins in Pseudomonas aeruginosa Adherence to Human Cells: University of Sheffield, 2018. Available at: https://etheses.whiterose.ac.uk/id/eprint/19680/.
3. Alvarez K.G., Goral L., Suwandi A., Lasswitz L., Zapatero-Belinchón F.J., Ehrhardt K., Nagarathinam K., Künnemann K., Krey T., Wiedemann A., Gerold G., Grassl G.A. Human tetraspanin CD81 facilitates invasion of Salmonella enterica into human epithelial cells. Virulence, 2024, Vol. 15, no. 1, 2399792. doi: 10.1080/21505594.2024.2399792.
4. Burton D.R., Roitt I.M. The production of effectors. In: Delves P.J., Martin S.J., Burton D.R., Roitt I.M. Roitt’s Essential Immunology, 2016, p. 218.
5. Butt A.T., Banyard C.D., Haldipurkar S.S., Agnoli K., Mohsin M.I., Vitovski S., Paleja A., Tang Y., Lomax R., Ye F., Green J., Thomas M.S. The Burkholderia cenocepacia iron starvation σ factor, OrbS, possesses an on-board iron sensor. Nucleic Acids Res., 2022, Vol. 50, no. 7, pp. 3709-3726.
6. Catapano M. The role of interleukin-36 in skin and systemic inflammation: King’s College London, 2019.
7. Chen R., Zou J., Zhong X., Liu J., Kang R., Tang D. The DAMP Theory: Concepts, Evidence, and Implications, 2024.
8. Curran C.S., Bolig T., Torabi-Parizi P. Mechanisms and targeted therapies for Pseudomonas aeruginosa lung infection. Am. J. Respir. Crit. Care Med., 2018, Vol. 197, no. 6, pp. 708-727.
9. Elgawidi A., Mohsin M.I., Ali F., Watts A., Monk P.N., Thomas M.S., Partridge L.J. A role for tetraspanin proteins in regulating fusion induced by Burkholderia thailandensis. Med. Microbi. Immunol., 2020, Vol. 209, pp. 473-487.
10. Green L.R., Monk P.N., Partridge L.J., Morris P., Gorringe A.R., Read R.C. Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells. Infect. Immun. 2011, Vol. 79, no. 6, pp. 2241-2249.
11. Haraga A., Ohlson M.B., Miller S.I. Salmonellae interplay with host cells. Nat. Rev. Microbiol., 2008, Vol. 6, no. 1, pp. 53-66.
12. Jin Y. The phenotype of tear neutrophils and their role in ocular homeostasis and inflammation: University of Waterloo, 2023.
13. Kleist A.B. Signal Discrimination and Signal Transduction at Chemokine G Protein-Coupled Receptors: The Medical College of Wisconsin, 2019.
14. Lossi N.S., Rolhion N., Magee A.I., Boyle C., Holden D.W. The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. Microbiology, 2008, Vol. 154, no. 9, pp. 2680-2688.
15. Luo J., Kong J.-l., Dong B.-Y., Huang H., Wang K., Wu L.-H., Hou C.-C., Liang Y., Li B., Chen Y.-Q. Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in P. aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug Des. Dev. Ther., 2016, Vol. 10, pp. 183-203.
16. Mageed A.H., Mohsin M.I., Al-Sahaf S. One-Pot Multicomponent Synthesis, Antibacterial and Antiproliferative Evaluation of Indole Derivatives. Pharm. Chem. J., 2023, Vol. 57, no. 2, pp. 250-264.
17. McIsaac S.M., Stadnyk A.W., Lin T.-J. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J. Leukoc. Biol., 2012, Vol. 92, no. 5, pp. 977-985.
18. Mohsin Ali R.I., Mohsin M.I., Al-Muhna A. Validation of Horizontal Genes Transfer Using Selected Clinical Strain of P. Mirabsilis for Swarming Activity. Indian J. Forensic Med. Toxicol., 2020, Vol. 14, no. 4, pp. 3418-3423.
19. Mohsin M.I., Al-Shamarti M.J., Abbas S.A., Mohsin R.I., Al-Sahaf S. Approach to enhance antibiotics efficiency towards uropathogenic bacteria. Malays. J. Microbiol., 2020, Vol. 16, no. 3, pp. 193-202.
20. Mohsin M.I., Al-Shamarti M.J., Mohsin R.I., Al-Sahaf S. Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection. Indian J. Forensic Med. Toxicol., 2020, Vol. 14, no. 3, pp. 1219-1224
21. Poe S.L. STAT1-Regulated lung MDSC-like cells aid resolution of inflammation after bacterial pneumonia: University of Pittsburgh, 2012.
22. Ramanathan J. Microbiome in Defence Against Pathogens. In: Pandey R., Sethuraman R. (eds.). Pathogens and environmental impact on life forms: Understanding pathogens and host defence mechanisms: Springer, 2024, pp. 343-422.
23. Saati A.A. Regulatory Role of Semaphorin 3E on Human Neutrophils Migration: University of Manitoba (Canada), 2013.
24. Sader J.E. Susceptibility of atomic force microscope cantilevers to lateral forces. Rev. Sci. Instrum., 2003, Vol. 74, no. 4, pp. 2438-2443.
25. Serra R., Grande R., Butrico L., Rossi A., Settimio U.F., Caroleo B., Amato B., Gallelli L., de Franciscis S. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti Infect. Ther., 2015, Vol. 13, no. 5, pp. 605-613.
26. Sorrentino R., De Souza P., Sriskandan S., Duffin C., Paul-Clark M., Mitchell J. Pattern recognition receptors and interleukin-8 mediate effects of Gram-positive and Gram-negative bacteria on lung epithelial cell function. Br. J. Pharmacol., 2008, Vol. 154, no. 4, pp. 864-871.
27. Stevens M.P., Stevens J.M., Jeng R.L., Taylor L.A., Wood M.W., Hawes P., Monaghan P., Welch M.D., Galyov E.E. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol., 2005, Vol. 56, no. 1, pp. 40-53.
28. Utaisincharoen P., Arjcharoen S., Limposuwan K., Tungpradabkul S., Sirisinha S. Burkholderia pseudomallei RpoS regulates multinucleated giant cell formation and inducible nitric oxide synthase expression in mouse macrophage cell line (RAW 264.7). Microb. Pathog., 2006, Vol. 40, no. 4, pp. 184-189.
29. Xu Q., Li R., Monte M.M., Jiang Y., Nie P., Holland J.W., Secombes C.J., Wang T. Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution. Dev. Comp. Immunol., 2014, Vol. 45, no. 2, pp, 201-213.
Supplementary files
Review
For citations:
Mohsin M.I., Khalfa H.M., Al-Hilali S.A., Al-Zubaidy I.M., Jabbar M.Sh., Zayed K.S., Al-Shamarti M.J. CXCR1, TLR4, and CXCL8: Key Mediators of Pseudomonas aeruginosa Virulence in Wound and Burn Infections. Medical Immunology (Russia). 2025;27(6):1301-1310. https://doi.org/10.15789/1563-0625-CTA-3182





































